Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Dong, H. Chen, Y.-C. and Feldmann, C. 2015. Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem., Vol. 17, Issue. 8, p. 4107.

    Dong, Hailong Roming, Marcus and Feldmann, Claus 2015. Unexpected Fluorescence of Polyols and PEGylated Nanoparticles Derived from Carbon Dot Formation. Particle & Particle Systems Characterization, Vol. 32, Issue. 4, p. 467.

    Hubble, Lee J. Cooper, James S. Sosa-Pintos, Andrea Kiiveri, Harri Chow, Edith Webster, Melissa S. Wieczorek, Lech and Raguse, Burkhard 2015. High-Throughput Fabrication and Screening Improves Gold Nanoparticle Chemiresistor Sensor Performance. ACS Combinatorial Science, Vol. 17, Issue. 2, p. 120.

    Belle, Clemens J. Wesch, Günter E. Neumeier, Stefan Lozano-Rodríguez, M. Janeth Scheinost, Andreas C. and Simon, Ulrich 2014. Volume-doped cobalt titanates for ethanol sensing: An impedance and X-ray absorption spectroscopy study. Sensors and Actuators B: Chemical, Vol. 192, p. 60.


    Lipatov, Alexey Varezhnikov, Alexey Wilson, Peter Sysoev, Victor Kolmakov, Andrei and Sinitskii, Alexander 2013. Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, Vol. 5, Issue. 12, p. 5426.


High-throughput experimentation in resistive gas sensor materials development

  • Clemens J. Belle (a1) and Ulrich Simon (a1)
  • DOI:
  • Published online: 22 November 2012

The review describes the workflow of a high-throughput screening process for the rapid identification of new and improved gas sensor materials. Multiple nanoparticulate metal oxides were synthesized via the polyol method, and material diversity was achieved by volume and/or surface doping. The resulting materials were applied as thick films on multielectrode substrates to serve as chemiresistors. This high-throughput approach including automated preparation, complex impedance measurements, and evaluation procedures enables reproducible measurements and their visual representation. Selected examples demonstrate the state of the art for applying high-throughput impedance spectroscopy in search of new sensitive and selective gas sensing materials as well as in analyzing structure–property relations.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W.H. Brattain and J. Bardeen : Surface properties of germanium. Bell. Syst. Technol. J. 32, 1 (1953).

G. Heiland : About the influence of adsorbed oxygen on the electrical conductivity of zinc oxide crystals (Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen). Z. Phys. 138(3–4), 459 (1954) [in German].

G. Heiland : About the influence of hydrogen on the electrical conductivity at the surface of zinc oxide crystals (Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen). Z. Phys. 148(1), 15 (1957) [in German].

T. Seiyama , A. Kato , K. Fujiishi , and M. Nagatami : A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502 (1962).

T. Seiyama and S. Kagawa : Detector for gaseous components with semiconductive thin films. Anal. Chem. 38, 1069 (1966).

G. Eranna , B.C. Joshi , D.P. Runthala , and R.P. Gupta : Oxide materials for development of integrated gas sensors–A comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).

H. Yokokawa , N. Sakai , T. Horita , and K. Yamaji : Recent developments in solid oxide fuel cell materials. Fuel Cells 1(2), 117 (2001).

M.A. Peña and J.L.G. Fierro : Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).

N. Keller , J. Mistrik , S. Visnovsky , D.S. Schmool , Y. Dumont , P. Renaudin , M. Guyot , and R. Krishnan : Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur. Phys. J. B 21(1), 67 (2001).

G. Martinelli , M.C. Carotta , M. Ferroni , Y. Sadaoka , and E. Traversa : Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens. Actuators, B 55, 99 (1999).

X. Niu , W. Du , and W. Du : Preparation, characterization and gas-sensing properties of rare earth mixed oxides. Sens. Actuators, B 99, 399 (2004).

T. Arakawa , S. Tsuchi-ya , and J. Shiokawa : Catalytic activity of rare-earth orthoferrites and orthochromites. Mater. Res. Bull. 16, 97 (1981).

H. Aono , E. Traversa , M. Sakamoto , and Y. Sadaoka : Crystallographic crystallization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomplexes, Ln[Fe(CN)6]*nH2O, Ln = La, Nd, Sm, Gd, and Dy. Sens. Actuators, B 94, 132 (2003).

X. Liu , J. Hu , B. Cheng , H. Qin , M. Zhao , and C. Yang : First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens. Actuators, B 139, 520 (2009).

X. Liu , J. Hu , B. Cheng , H. Qin , and M. Jiang : Preparation and gas sensing characteristics of p-type semiconducting LnFe0.9Mg0.1O3 (Ln = Nd, Sm, Gd and Dy) materials. Curr. Appl Phys. 9, 613 (2009).

X. Chu , X. Liu , G. Wang , and G. Meng : Preparation and gas sensing properties of nano-CoTiO3. Mater. Res. Bull. 34(10/11), 1789 (1999).

A.R. Potyrailo and V.M. Mirsky : Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev. 108, 770 (2008).

N. Bârsan : Conduction models in gas-sensing SnO2 layers: Grain-size effects and ambient atmosphere influence. Sens. Actuators, B 17(3), 241 (1994).

N. Bârsan , M. Schweizer-Berberich , and W. Göpel : Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem. 365(4), 287 (1999).

M.I. Baraton and L. Merhari : Advances in air quality monitoring via nanotechnology. J. Nanopart. Res. 6(1), 107 (2004).

G. Korotcenkov : Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sens. Actuators, B 121(2), 664 (2007).

N. Yamazoe , G. Sakai , and K. Shimanoe : Oxide semiconductor gas sensor. Catal. Surv. Asia 7, 63 (2003).

N. Yamazoe : New approaches for improving semiconductor gas sensors. Sens. Actuators, B 5(1–4), 7 (1991).

S. Samson and C.G. Fonstad : Defect structure and electronic donor levels in stanic oxide crystals. J. Appl. Phys. 44(10), 4618 (1973).

Z.M. Jarzebski and J.M. Marton : Physical properties of SnO2 materials. J. Electrochem. Soc. 123, 299C (1976).

J. Maier and W. Göpel : Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide. J. Solid State Chem. 72(2), 293 (1988).

W. Göpel and K.D. Schierbaum : Chemisorption and charge transfer at ionic semiconductor surfaces: Imaging in designing gas sensors. Sens. Actuators, B 2627, 1 (1995).

P.B. Weisz : Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531 (1953).

M.I. Barton , L. Merhari , H. Ferkerl , and J.F. Catagnet : Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: Carbon monoxide and oxygen detection. Mater. Sci. Eng., C 19, 315 (2002).

J. Madou and S.R. Morrison : Chemical Sensing with Solid State Devices (Academic Press, New York, 1989).

S. Lenaerts , M. Honore , G. Huyberechts , J. Roggen , and G. Maes : In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K. Sens. Actuators, B 19, 478 (1994).

H. Ogawa , M. Nishikawa , and A. Abe : Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).

N. Bârsan and U. Weimar : Understanding the fundamental principles of metal oxide based gas sensors: The example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15(20), R813 (2003).

M.E. Franke , T.J. Koplin , and U. Simon : Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36 (2006).

G. Korotcenkov : Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng., B 139(1), 1 (2007).

N. Bârsan , D. Koziej , and U. Weimar : Metal oxide-based gas sensor research: How to? Sens. Actuators, B 121(1), 18 (2007).

K.D. Benkstein and S. Semancik : Mesoporous nanoparticles TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens. Actuators, B 113, 445 (2006).

A. Rothschild and Y. Komem : The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95, 6374 (2004).

Y. Shimizu , A. Jono , T. Hyodo , and M. Egashira : Preparation of large mesoporous SnO2 powder for gas sensor application. Sens. Actuators, B 108, 56 (2005).

G. Korotcenkov : The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng., R. 61, 1 (2008).

L. Schmidt-Mende , and J.L. MacManus-Driscoll : ZnO–nanostructures, defects, and devices. Mater. Today 10(5), 40 (2007).

A. Gurlo : Nanosensors: Does crystal shape matter? Small 6(11), 2077 (2010).

A. Seyed-Razavi , I.K. Snook , and A.S. Barnard : Origin of nanomorphology: Does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20, 416 (2010).

G. Korotcenkov : Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators, B 107, 209 (2005).

J. Kappler , N. Bârsan , U. Weimar , A. Diéguez , J.L. Alay , A. Romano-Rodriguez , J.R. Morante , and W. Göpel : Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J. Anal. Chem. 361(2), 110 (1998).

A. Cabot , J. Arbiol , J.R. Morante , U. Weimar , N. Bârsan , and W. Göpel : Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sens. Actuators, B 70(1–3), 87 (2000).

S.R. Morrison : Selectivity in semiconductor gas sensors. Sens. Actuators 12, 425 (1987).

D. Kohl : The role of noble metals in the chemistry of solid-state gas sensors. Sens. Actuators, B 1, 158 (1990).

N. Tsud , V. Johanek , I. Stara , K. Veltruska , and V. Matolin : XPS, ISS, and TPD study of Pd-Sn interactions on Pd-SnOX systems. Thin Solid Films 391, 204 (2001).

A.M. Ruiz , A. Cornet , K. Shimanoe , J.R. Morante , and N. Yamazoe : Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators, B 108(1–2), 34 (2005).

C. Mohr , H. Hofmeister , J. Radnik , and P. Claus : Identification of active sites in gold-catalyzed hydrogenation of acrolein. J. Am. Chem. Soc. 125, 1905 (2003).

Y.Y. Fong , A.Z. Abdullah , A.L. Ahmad , and S. Bhatia : Zeolite membrane based selective gas sensors for monitoring and control of gas emissions. Sens. Lett. 5(3–4), 485 (2007).

K. Sahner , R. Moos , M. Matam , J.J. Tunney , and M. Post : Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials. Sens. Actuators, B 108, 102 (2005).

T. Sahm , R. Weizhi , N. Bârsan , L. Mädler , and U. Weimar : Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors. Sens. Actuators, B 127(1), 63 (2007).

J. Trimboli , M. Mottern , H. Verweij , and P.D. Dutta : Interaction of water with titania: Implications for high-temperature gas sensing. J. Phys. Chem. 110(11), 5647 (2006).

A. Cabot , J. Arbiol , A. Cornet , J.R. Morante , F. Chen , and M. Liu : Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 436(1), 64 (2003).

C. Pijolat , J.P. Viricelle , G. Tournier , and P. Montmeat : Application of membranes and filtering films for gas sensors improvements. Thin Solid Films 490(1), 7 (2005).

J.J. Hanak : The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964 (1970).

J.J. Hanak : A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223(1–3), 1 (2004).

R.B. van Dover , R.F. Schneemeyer , and R.M. Fleming : Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392, 162 (1998).

G. Briceño , H. Shang , X. Sun , P.G. Schultz , and X-D. Xiang : A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273 (1995).

S.H. Baeck , T.F. Jaramillo , C. Brändi , and E.W. McFarland : Combinatorial electrochemical synthesis and characterization of tungsten-based mixed metal oxides. J. Comb. Chem. 4, 563 (2002).

A. Hagemeyer , P. Strasser , and A.F. Volpe Jr., eds.: High-throughput Screening in Chemical Catalysis: Technologies, Strategies and Applications (Wiley-VCH, Weinheim, Germany, 2004).

M.A. Aramova , K.S. Chang , I. Tageuchi , H. Jabs , D. Westerheim , A. Gonzalez-Martin , J. Kim , and B. Lewis : Combinatorial libraries of semiconductor gas sensor as inorganic electronic noses. Appl. Phys. Lett. 83(6), 1255 (2003).

R. Dagani : A faster route to new materials. Chem. Eng. News 77(10), 51 (1999).

W.F. Maier , K. Stöwe , and S. Sieg : Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46(32), 6016 (2007).

U. Simon , D. Sanders , J. Jockel , C. Heppel , and T. Brinz : Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J. Comb. Chem. 4, 511 (2002).

A. Franzen , D. Sanders , J. Jockel , J. Scheidtmann , G. Frenzer , W.F. Maier , T. Brinz , and U. Simon : High-throughput method for the impedance spectroscopic characterization of resistive gas sensors. Angew. Chem. Int. Ed. 43(6), 752 (2004).

U. Simon , D. Sanders , J. Jockel , and T. Brinz : Setup for high-throughput impedance screening of gas-sensing materials. J. Comb. Chem. 7(5), 682 (2005).

P. Toneguzzo , G. Viau , O. Acher , F. Guillet , E. Bruneton , F. Fievet-Vincent , and F. Fievet : CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).

L. Poul , S. Ammar , N. Jouini , F. Fievet , and F. Villain : Synthesis of inorganic compounds (metal, oxide and hydroxide) in medium: A versatile route related to the sol-gel process. J. Sol-Gel Sci. Technol. 26, 261 (2003).

C. Feldmann and H. Jungk : Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40(2), 359 (2001).

M. Siemons , T. Weirich , J. Mayer , and U. Simon : Preparation of nanosized perovskite-type oxides via polyol method. Z. Anorg. Allg. Chem. 630, 2083 (2004).

M. Siemons , A. Leifert , and U. Simon : Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Funct. Mater. 17, 2189 (2007).

M. Siemons and U. Simon : Polyol-mediated synthesis of LnCrO3 (Ln = La, Pr, Sm-Lu). Z. Anorg. Allg. Chem. 632(12–13), 2159 (2006).

D. Sanders and U. Simon : High-throughput gas sensing screening of surface doped In2O3. J. Comb. Chem. 9, 53 (2007).

M. Siemons and U. Simon : Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sens. Actuators, B 120(1), 110 (2006).

M. Siemons , T.J. Koplin , and U. Simon : Advances in high throughput screening of gas sensing materials. Appl. Surf. Sci. 254(3), 669 (2007).

M. Siemons and U. Simon : High throughput screening of the sensing properties of doped SmFeO3. Solid State Phenom. 128, 225 (2006).

A. Frantzen , D. Sanders , J. Scheidtmann , U. Simon , and W.F. Maier : A flexible database for combinatorial and high-throughput materials science. QSAR Comb. Sci. 24(1), 22 (2005).

C.J. Belle , A. Bonamin , U. Simon , J. Santoyo-Salazar , M. Pauly , S. Bégin-Colin , and G. Pourroy : Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators, B 160(1), 942 (2011).

T.J. Koplin , M. Siemons , C. Océn-Valéntine , D. Sanders , and U. Simon : Workflow for high-throughput screening of gas sensing materials. Sensors 6, 298 (2006).

M. Siemons and U. Simon : High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sens. Actuators, B 126(1), 181 (2007).

P. Song , H. Qin , L. Zhang , X. Liu , S. Huang , J. Hu , and M. Jiang : Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.2O3 semiconductive material. Physica B 368(1–4), 204208 (2005).

H-J. Lee , J-H. Song , Y-S. Yoon , T-S. Kim , K-J. Kim , and W-K. Choi : Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens. Actuators, B 79, 200 (2001).

T. Arakawa , H. Kurachi , and J. Shiokawa : Physicochemical properties of rare earth perovskite oxides used as gas sensor material. J. Mater. Sci. 20, 1207 (1985).

T.H. Muster , A. Trinichi , T.A. Markley , D. Lau , P. Martin , A. Bradbury , A. Bendavid , and S. Dligatch : A review of high throughput and combinatorial electrochemistry. Electrochim. Acta 56, 9679 (2011).

S.O. Klemm , A.A. Topalov , C.A. Laska , and K.J.J. Mayrhofer : Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 13(12), 1533 (2011).

S.O. Klemm , J-C. Schauer , B. Schumacher , and A.W. Hassel : High throughput electrochemical screening and dissolution monitoring of Mg-Zn material libraries. Electrochim. Acta 56, 9627 (2011).

S. Klemm , N. Fink , and K. Mayrhofer : High-throughput in search of new catalysts (Mit Hochdurchsatz auf der Suche nach neuen Katalysatoren). Nachr. Chem. 60, 535 (2012) [in German].

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *