Skip to main content

Hot deformation behavior of Ti–22Al–25Nb alloy by processing maps and kinetic analysis

  • He Zhang (a1), Huijun Li (a1), Qianyin Guo (a1), Yongchang Liu (a1) and Liming Yu (a1)...

To study the hot deformation behavior of the Ti–22Al–25Nb alloy, isothermal compression tests were conducted at the temperature range of 930–1080 °C with strain rates of 0.001–1.0 s−1. Both the strain rate and the deformation temperature have a significant influence on the stress–strain behavior of the Ti–22Al–25Nb alloy. A hyperbolic–sine constitutive equation is established to quantitatively demonstrate the relationship between the parameters involved, and the hot deformation activation energy Q is determined as 621 kJ/mol. To optimize the processing window, a hot processing map is established, which is related to the microstructure evolution in hot working. The lamellar globularization as well as the dynamic recrystallization (DRX) would contribute to the stable regions with high power dissipation, while the adiabatic shear bands would lead to unstable regions. Moreover, an Avrami-type kinetics model is applied to examine the evolution of DRX during isothermal deformation process.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Gogia A.K., Nandy T.K., Banerjee D., Carisey T., Strudel J.L., and Franchet J.M.: Microstructure and mechanical properties of orthorhombic alloys in the Ti–Al–Nb system. Intermetallics 6, 741748 (1998).
2.Nandy T.K. and Banerjee D.: Deformation mechanisms in the O phase. Intermetallics 8, 12691282 (2000).
3.Emura S., Tsuzaki K., and Tsuchiya K.: Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Mater. Sci. Eng., A 528, 355362 (2010).
4.Xu L.Q., Zhang D.T., Liu Y.C., Ning B.Q., Qiao Z.X., Yan Z.S., and Li H.J.: Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel. Int. J. Min. Met. Mater. 21, 438447 (2014).
5.Dey S.R., Roy S., Suwas S., Fundenberger J.J., and Ray R.K.: Annealing response of the intermetallic alloy Ti–22Al–25Nb. Intermetallics 18, 11221131 (2010).
6.Dey S.R., Suwas S., Fundenberger J.J., and Ray R.K.: Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti–22Al–25Nb. Intermetallics 17, 622633 (2009).
7.Jia J.B., Zhang K.F., and Lu Z.: Dynamic recrystallization kinetics of a powder metallurgy Ti–22Al–25Nb alloy during hot compression. Mater. Sci. Eng., A 607, 630639 (2014).
8.Xue C., Zeng W.D., Xu B., liang X.B., Zhang J.W., and Li S.Q.: B2 grain growth and particle pinning effect of Ti–22Al–25Nb orthorhombic intermetallic alloy during heating process. Intermetallics 29, 4147 (2012).
9.Zhou Y.H., Liu Y.C., Zhou X.S., Liu C.X., Yu L.M., Li C., and Ning B.Q.: Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stain less steel. J. Mater. Res. 30, 20902100 (2015).
10.Zhou X.S., Liu C.X., Yu L.M., Liu Y.C., and Li H.J.: Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review. J. Mater. Sci. Technol. 31, 235242 (2015).
11.Prasad Y., Gegel H., Doraivelu S., Malas J., Morgan J., Lark K., and Barker D.: Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 15, 18831892 (1984).
12.Samantaray D., Mandal S., and Bhaduri A.: Characterization of deformation instability in modified 9Cr–1Mo steel during thermo-mechanical processing. Mater. Des. 32, 716722 (2011).
13.Al-Samman T. and Gottstein G.: Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng., A 490, 411420 (2008).
14.Zhou H.T., Li Q.B., Zhao Z.K., Liu Z.C., Wen S.F., and Wang Q.D.: Hot workability characteristics of magnesium alloy AZ80—A study using processing map. Mater. Sci. Eng., A 527, 20222026 (2010).
15.Xu Y., Hu L.X., and Sun Y.: Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy. J. Alloys Compd. 580, 262269 (2013).
16.Lv B.J., Peng J., Shi D.W., Tang A.T., and Pan F.S.: Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress–strain curves. Mater. Sci. Eng., A 560, 727733 (2013).
17.Li A.B., Huang L.J., Meng Q.Y., Geng L., and Cui X.P.: Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map. Mater. Des. 30, 16251631 (2009).
18.Wang X., Hamasaki H., Yamamura M., Yamauchi R., Maeda T., Shirai Y., and Yoshida F.: Yield-point phenomena of Ti–20V–4Al–1Sn at 1073K and its constitutive modelling. Mater. Trans. 50, 15761578 (2009).
19.Jia W.J., Zeng W.D., Zhou Y.G., Liu J.R., and Wang Q.J.: High-temperature deformation behavior of Ti60 titanium alloy. Mater. Sci. Eng., A 528, 40684074 (2011).
20.Dehghan H., Abbasi S.M., and Momeni A.: On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy. J. Alloys Compd. 564, 1319 (2013).
21.Ji G.L., Li F.G., and Li Q.H.: A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel. Mater. Sci. Eng. A 528, 47744782 (2011).
22.McQueen H.J. and Imbert C.A.C.: Dynamic recrystallization: Plasticity enhancing structural development. J. Alloys Compd. 378, 3543 (2004).
23.Sellars C.M. and Tegart M.W.: On the mechanism of hot deformation. Acta Metall. 14(9), 11361138 (1966).
24.Meng G., Li B., Li H., Huang H., and Nie Z.: Hot deformation and processing maps of an Al–5.7wt%Mg alloy with erbium. Mater. Sci. Eng., A 517, 132137 (2009).
25.Zener C. and Hollomon J.H.: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 2232 (1944).
26.Murty S.V.S.N., Sarma M.S., and Rao B.N.: On the evaluation of efficiency parameters in processing maps. Metall. Mater. Trans. A 28, 15811582 (1997).
27.Sellars C.M. and Tegart W.J.M.: Hot workability. Int. Metall. Rev. 17, 124 (1972).
28.Sha W.: Crystallization and nematic–isotropic transition activation energies measured using the Kissinger method. J. Appl. Polym. Sci. 80, 25352537 (2001).
29.Sun Y., Zeng W.D., Zhao Y.Q., Zhang X.M., Shu Y., and Zhou Y.G.: Research on the hot deformation behavior of Ti40 alloy using processing map. Mater. Sci. Eng., A 528, 12051211 (2011).
30.Cheng L., Chang H., Tang B., Kou H.C., and Li J.S.: Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy. J. Alloys Compd. 552, 363369 (2013).
31.Fernández A.I., Uranga P., López B., and Rodriguez-Ibabe J.M.: Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Mater. Sci. Eng., A 361, 367376 (2003).
32.Liu J., Cui Z., and Ruan L.: A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater. Sci. Eng., A 529, 300310 (2011).
33.Ji G.L., Li F.G., Li Q.H., Li H.Q., and Li Z.: Research on the dynamic recrystallization kinetics of Aermet 100 steel. Mater. Sci. Eng., A 527, 23502355 (2010).
34.Najafizadeh A. and Jonas J.J.: Predicting the critical stress for initiation of dynamic recrystallization. ISIJ Int. 46, 16791684 (2006).
35.Quan G.Z., Wu D.S., Luo G.C., Xia Y.F., Zhou J., Liu Q., and Gao L.: Dynamic recrystallization kinetics in α phase of as-cast Ti–6Al–2Zr–1Mo–1V alloy during compression at different temperatures and strain rates. Mater. Sci. Eng., A 589, 2333 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 66 *
Loading metrics...

Abstract views

Total abstract views: 212 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.