Skip to main content

Importance of surface preparation on the nano-indentation stress-strain curves measured in metals

  • Siddhartha Pathak (a1), Dejan Stojakovic (a1), Roger Doherty (a1) and Surya R. Kalidindi (a1)

In this work, we investigated experimentally the various factors influencing the extraction of indentation stress-strain curves from spherical nanoindentation on metal samples using two different tip radii. In particular, we focused on the effects of (i) the surface preparation techniques used, (ii) the presence of a surface oxide layer, and (iii) the occurrence of pop-ins at the elastic-plastic transition on our newly developed data analysis methods for extracting reliable indentation stress-strain curves. Rough mechanical polishing was shown to introduce a large scatter in the measured indentation yield strengths, whereas electropolishing or vibropolishing produced consistent results reflective of the pristine sample. The data analysis techniques used were able to discard the portions of the raw data affected by a thin oxide layer, present on most metal surfaces, and yield reasonable indentation stress-strain curves. Experiments with different indenter tip radii on annealed and cold-worked samples indicated that pop-ins are caused by delayed nucleation of dislocations in the sample under the indenter.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1.Tabor D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 1951).
2.Schuh C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).
3.Fischer-Cripps A.C.: Review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).
4.Fischer-Cripps A.C.: Nanoindentation, 2nd ed. (Springer, New York, 2004).
5.Oliver W.C. and Pharr G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
6.Oliver W.C. and Pharr G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).
7.Pharr G.M. and Bolshakov A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17(10), 2260 (2002).
8.Basu S., Moseson A., and Barsoum M.W.: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).
9.Field J.S. and Swain M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).
10.Field J.S. and Swain M.V.: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).
11.Swain M.V.: Mechanical property characterization of small volumes of brittle materials with spherical tipped indenters. Mater. Sci. Eng., A 253, 160 (1998).
12.Murugaiah A., Barsoum M.W., Kalidindi S.R., and Zhen T.: Spherical nanoindentations and kink bands in Ti3SiC2. J. Mater. Res. 19, 1139 (2004).
13.He L.H., Fujisawa N., and Swain M.V.: Elastic modulus and stress-strain response of human enamel by nano-indentation. Bio-mater. 27, 4388 (2006).
14.Taljat B., Zacharia T., and Kosel F.: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).
15.Beghini M., Bertini L., and Fontanari V.: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 (2006).
16.Michler J., Stauss S., Schwaller P., Bucaille J-L., and Felder E.: Determining the stress-strain behavior at micro- and nanometer scales by coupling nanoindentation to numerical simulation. EMPA (Swiss Federal Laboratories for Materials Testing and Research) Publication 6 (2002).
17.Stauss S., Schwaller P., Bucaille J.L., Rabe R., Rohr L., Michler J., and Blank E.: Determining the stress-strain behavior of small devices by nanoindentation in combination with inverse methods, in Proceedings of the 28th International Conference on MNE (Elsevier, New York, 2003), p. 818.
18.Pelletier H.: Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation. Tribol. Int. 39, 593 (2006).
19.Kalidindi S.R. and Pathak S.: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56, 3523 (2008).
20.Pathak S., Kalidindi S.R., Klemenz C., and Orlovskaya N.: Analyzing indentation stress-strain response of LaGaO3 single crystals using spherical indenters. J. Eur. Ceram. Soc. 28, 2213 (2008).
21.Pathak S., Stojakovic D., and Kalidindi S.R.: Measurement of the local mechanical properties in polycrystalline samples using spherical nano-indentation and orientation imaging microscopy. Acta Mater. (2008, submitted).
22.Hertz H.: Miscellaneous Papers (MacMillan and Co. Ltd., New York, 1896).
23.Love A.E.H.: Boussinesq's problem for a rigid cone. J. Math. 10, 161 (1939).
24.Mencik J. and Swain M.V.: Errors associated with depth-sensing microindentation tests. J. Mater. Res. 10, 1491 (1995).
25.Pathak S., Kalidindi S.R., Moser B., Klemenz C., and Orlovskaya N.: Analyzing indentation behavior of LaGaO3 single crystals using sharp indenters. J. Eur. Ceram. Soc. 28, 2039 (2008).
26.Barsoum M.W., Zhen T., Kalidindi S.R., Radovic M., and Murugaiah A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 (2003).
27.Petzow G.: Metallographic Etching: Techniques for Metallotra-phy, Ceramography, Plastography, 2nd ed. (ASM International, New York, 1999).
28.Handbook A.S.M., Vol. 9: Metallography and Microstructures (ASM International, 2004).
29.Asif S.A.S. and Pethica J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).
30.Bahr D.F., Kramer D.E., and Gerberich W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).
31.Hill N.A. and Jones J.W.S.: The crystallographic dependence of low-load indentation hardness in beryllium. J. Nucl. Mater. 3, 137 (1961).
32.Simmons G. and Wang H.: Single Crystal Elastic Constants and Calculated Aggregate Properties, 2nd ed. (The MIT Press, Boston, MA, 1971).
33.Venkataraman S.K., Kohlstedt D.L., and Gerberich W.W.: Continuous microindentation of passivating surfaces. J. Mater. Res. 8, 685 (1993).
34.Vlassak J.J. and Nix W.D.: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045 (1993).
35.Timoshenko S.P. and Goodier J.N.: Theory of Elasticity, 3rd ed. (McGraw Hill Higher Education, New York, 1970).
36.Smithells Metals Reference Book, 8th ed. (Butterworth-Heinemann, Oxford, UK, 2004).
37.Gane N. and Bowden F.P.: Microdeformation of solids. J. Appl. Phys. 39, 1432 (1968).
38.Pethica J.B. and Tabor D.: Contact of characterised metal surfaces at very low loads: Deformation and adhesion. Surf. Sci. 89, 182 (1979).
39.Corcoran S.G., Colton R.J., Lilleodden E.T., and Gerberich W. W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B: Condens. Matter 55, 16057 (1997).
40.Gerberich W.W., Nelson J.C., Lilleodden E.T., Anderson P., and Wyrobek J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).
41.Gerberich W.W., Venkataraman S., Nelson J., Huang H., Lilleodden E., and Bonin W.: Yield point phenomena and dislocation velocities underneath indentations into BCC crystals: in Thin Films: Stresses and Mechanical Properties V, edited by Baker S.P., Ross C.A., Townsend P.H., Volkert C.A., and Borgesen P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 629.
42.Gerberich W.W., Venkataraman S.K., Huang H., Harvey S.E., and Kohlstedt D.L.: Injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).
43.Gouldstone A., Koh H.J., Zeng K.Y., Giannakopoulos A.E., and Suresh S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).
44.Harvey S., Huang H., Venkataraman S., and Gerberich W.W.: Microscopy and microindentation mechanics of single crystal Fe-3 wt%Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).
45.Lilleodden E.T., Bonin W., Nelson J., Wyrobek J.T., and Gerberich W.W.: In situ imaging of μN load indents into GaAs. J. Mater. Res. 10, 2162 (1995).
46.Mann A.B., Pethica J.B., Nix W.D., and Tomiya S.: Nanoindentation of epitaxial films: A study of pop-in events, in Thin Films: Stresses and Mechanical Properties V, edited by Baker S.P., Ross C.A., Townsend P.H., Volkert C.A., and Borgesen P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 271.
47.Maugis D., Desalos-Andarelli G., Heurtel A., and Courtel R.: Adhesion and friction on Al thin foils related to observed dislocation density. ASLE Trans. 21, 1 (1978).
48.Michalske T.A. and Houston J.E.: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1998).
49.Suresh S., Nieh T.G., and Choi B.W.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).
50.Tangyunyong P., Thomas R.C., Houston J.E., Michalske T.A., Crooks R.M., and Howard A.J.: Nanometer-scale mechanics of gold films. Phys. Rev. Lett. 71, 3319 (1993).
51.Wu T.W., Hwang C., Lo J., and Alexopoulos P.: Microhardness and microstructure of ion-beam-sputtered, nitrogen-doped NiFe films. Thin Solid Films 166, 299 (1988).
52.Chiu Y.L. and Ngan A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).
53.Chiu Y.L. and Ngan A.H.W.: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).
54.Wang W., Jiang C.B., and Lu K.: Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169 (2003).
55.Gaillard Y., Tromas C., and Woirgard J.: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 (2003).
56.Page T.F., Oliver W.C., and McHargue C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7, 450 (1992).
57.Pethica J.B. and Oliver W.C.: Tip surface interactions in STM and AFM, in 7th General Conference of the Condensed Matter Division of the European Physical Society (Phys. Scr. Vol. T, European Physcial Society, Mulhouse, France, 1987), p. 61.
58.Schuh C.A. and Lund A.C.: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 9, 2152 (2004).
59.Xiaotong W. and Padture N.P.: Shear strength of ceramics. J. Mater. Sci. 39, 1891 (2004).
60.Courtney T.H.: Mechanical Behavior of Materials, 2nd ed. (McGraw-Hill Science/Engineering/Math, New York, 1999).
61.Giannakopoulos A.E. and Suresh S.: Determination of elastoplas-tic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999).
62.Thomas R.C., Houston J.E., Michalske T.A., and Crooks R.M.: Mechanical response of gold substrates passivated by self-assembling monolayer films. Science 259, 1883 (1993).
63.Kelly A. and Macmillan N.H.: Strong Solids, 3rd ed. (Clarendon Press, Oxford, UK, 1986), pp. xiv + 423.
64.Schuh C.A. and Nieh T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).
65.Moser B., Kuebler J., Meinhard H., Muster W., and Michler J.: Observation of instabilities during plastic deformation by insitu SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005).
66.Berces G., Chinh N.Q., Juhasz A., and Lendvai J.: Occurrence of plastic instabilities in dynamic microhardness testing. J. Mater. Res. 13, 1411 (1998).
67.Chrobak D., Nordlund K., and Nowak R.: Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98, 045502 (2007).
68.Domnich V., Gogotsi Y., and Dub S.: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).
69.Bahr D.F., Nelson J.C., Tymiak N.I., and Gerberich W.W.: The mechanical behavior of a passivating surface under potentiostatic control. J. Mater. Res. 12, 3345 (1997).
70.Larsson P.L., Giannakopoulos A.E., Soderlund E., Rowcliffe D.J., and Vestergaard R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996).
71.Mann A.B. and Pethica J.B.: Role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).
72.Mann A.B. and Pethica J.B.: Dislocation nucleation and multiplication during nanoindentation testing, in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich W.W., Gao H., Sundgren J-E., and Baker S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 153.
73.Bahr D.F., Watkins C.M., Kramer D.E., and Gerberich W.W.: Yield point phenomena during indentation, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody N.R., Gerberich W.W., Burnham N., and Baker S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 83.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 103 *
Loading metrics...

Abstract views

Total abstract views: 523 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.