Skip to main content
    • Aa
    • Aa

Improved structural and electrical properties of thin ZnO:Al films by dc filtered cathodic arc deposition

  • Yuankun Zhu (a1), Rueben J. Mendelsberg (a2), Sunnie H.N. Lim (a3), Jiaqi Zhu (a4), Jiecai Han (a4) and André Anders (a5)...

Transparent conducting oxide films are usually several 100-nm thick to achieve the required low sheet resistance. In this study, we show that the filtered cathodic arc technique produces high-quality low-cost ZnO:Al material for comparably smaller thicknesses than achieved by magnetron sputtering, making arc deposition a promising choice for applications requiring films less than 100-nm thick. A mean surface roughness less than 1 nm is observed for ZnO:Al films less than 100-nm thick, and 35-nm-thick ZnO:Al films exhibit Hall mobility of 28 cm2/Vs and a low resistivity of 6.5 × 10−4 Ωcm. Resistivity as low as 5.2 × 10−4 Ωcm and mobility as high as 43.5 cm2/Vs are obtained for 135-nm films.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Liu H., Avrutin V., Izyumskaya N., Özgür Ü., and Morkoç H.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48(5), 458 (2010).
2.Kim H., Horwitz J.S., Kushto G., Piqué A., Kafafi Z.H., Gilmore C.M., and Chrisey D.B.: Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88(10), 6021 (2000).
3.Kumar K.J., Raju N.R.C., and Subrahmanyam A.: Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering. Appl. Surf. Sci. 257(7), 3075 (2011).
4.Amanullah F.M., Pratap K.J., and Babu V.H.: Thickness dependence of electrical and structural properties of FTO films. Cryst. Res. Technol. 26, 1099 (1991).
5.Moholkar A.V., Pawar S.M., Rajpure K.Y., Patil P.S., and Bhosale C.H.: Properties of highly oriented spray-deposited fluorine-doped tin oxide thin films on glass substrates of different thickness. J. Phys. Chem. Solids 68(10), 1981 (2007).
6.Rakhshani A., Makdisi Y., and Ramazaniyan H.: Electronic and optical properties of fluorine-doped tin oxide films. J. Appl. Phys. 83(2), 1049 (1998).
7.Fortunato E., Gonçalves A., Assunção V., Marques A., Águas H., Pereira L., Ferreira I., and Martins R.: Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence. Thin Solid Films 442(1–2), 121 (2003).
8.Minami T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).
9.Dong B-Z., Fang G-J., Wang J-F., Guan W-J., and Zhao X-Z.: Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition. J. Appl. Phys. 101(3), 033713 (2007).
10.Anders A., Lim S.H.N., Yu K.M., Andersson J., Rosén J., McFarland M., and Brown J.: High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition. Thin Solid Films 518, 3313 (2010).
11.Liang G-X., Fan P., Cai X-M., Zhang D-P., and Zheng Z-H.: The influence of film thickness on the transparency and conductivity of al-doped ZnO thin films fabricated by ion-beam sputtering. J. Electron. Mater. 40(3), 267 (2011).
12.Lee H-C. and Ok Park O.: The evolution of the structural, electrical and optical properties in indium-tin-oxide thin film on glass substrate by DC reactive magnetron sputtering. Vacuum 80(8), 880 (2006).
13.Agashe C., Kluth O., Hupkes J., Zastrow U., Rech B., and Wuttig M.: Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. J. Appl. Phys. 95(4), 1911 (2004).
14.Bai S.N. and Tseng T.Y.: Effect of alumina doping on structural, electrical, and optical properties of sputtered ZnO thin films. Thin Solid Films 515(3), 872 (2006).
15.Cebulla R., Wendt R., and Ellmer K.: Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 83(2), 1087 (1998).
16.Ellmer K., Kudella F., Mientus R., Schieck R., and Fiechter S.: Influence of discharge parameters on the layer properties of reactive magnetron sputtered ZnO:Al films. Thin Solid Films 247(1), 15 (1994).
17.Fang G., Li D., and Yao B-L.: Fabrication and characterization of c-axis-oriented transparent conductive nanocrystalline AZO thin films by rf magnetron sputtering. Proc. SPIE 4919, 405 (2002).
18.Hoon J-W., Chan K-Y., Krishnasamy J., Tou T-Y., and Knipp D.: Direct current magnetron sputter-deposited ZnO thin films. Appl. Surf. Sci. 257(7), 2508 (2011).
19.Jäger S., Szyszka B., Szczyrbowski J., and Bräuer G.: Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering. Surf. Coat. Tech. 98(1–3), 1304 (1998).
20.Maniv S., Westwood W., and Colombini E.: Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J. Vac. Sci. Technol. 20(2), 162 (1982).
21.Szyszka B.: Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films 351, 164 (1999).
22.Tominaga K., Umezu N., Mori I., Ushiro T., Moriga T., and Nakabayashi I.: Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets. Thin Solid Films 334(1–2), 35 (1998).
23.Di Trolio A., Bauer E.M., Scavia G., and Veroli C.: Blueshift of optical band gap in c-axis oriented and conducting Al-doped ZnO thin films. J. Appl. Phys. 105(11), 113109 (2009).
24.Park S-M., Ikegami T., and Ebihara K.: Investigation of transparent conductive oxide Al-doped ZnO films produced by pulsed laser deposition. Jpn. J. Appl. Phys. 44(11), 8027 (2005).
25.Prasad S., Nainaparampil J., and Zabinski J.: Tribological behavior of alumina doped zinc oxide films grown by pulsed laser deposition. J. Vac. Sci. Technol., A 20(5), 1738 (2002).
26.Suzuki A., Matsushita T., Wada N., Sakamoto Y., and Okuda M.: Transparent conducting Al-doped ZnO thin films prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 35, L56 (1996).
27.Suzuki A., Nakamura M., Michihata R., Aoki T., Matsushita T., and Okuda M.: Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition. Thin Solid Films 517(4), 1478 (2008).
28.Tanaka H., Ihara K., Miyata T., Sato H., and Minami T.: Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition. J. Vac. Sci. Technol., A 22(4), 1757 (2004).
29.Tay B.K., Zhao Z.W., and Chua D.H.C.: Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52(1–3), 1 (2006).
30.Goldsmith S.: Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties. Surf. Coat. Tech. 201(7), 3993 (2006).
31.Lee H.W., Lau S.P., Wang Y.G., Tse K.Y., Hng H.H., and Tay B.K.: Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. J. Cryst. Growth 268(3–4), 596 (2004).
32.Mendelsberg R.J., Lim S.H.N., Zhu Y.K., Wallig J., Milliron D.J., and Anders A.: Achieving high mobility ZnO:Al at very high growth rates by dc filtered cathodic arc deposition. J. Phys. D: Appl. Phys. 44(23), 232003 (2011).
33.Zhitomirsky V.N., Çetinörgü E., Adler E., Rosenberg Y., Boxman R.L., and Goldsmith S.: Filtered vacuum arc deposition of transparent conducting Al-doped ZnO films. Thin Solid Films 515(3), 885 (2006).
34.Anders A.: Atomic scale heating in cathodic arc plasma deposition. Appl. Phys. Lett. 80(6), 1100 (2002).
35.Anders A.: Energetic deposition using filtered cathodic arc plasmas. Vacuum 67, 673 (2002).
36.Anders A.: Approaches to rid cathodic arc plasma of macro- and nanoparticles: A review. Surf. Coat. Tech. 120121, 319 (1999).
37.Anders A.: Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008).
38.Anders A. and Kühn M.: Characterization of a low-energy constricted-plasma source. Rev. Sci. Instrum. 69(3), 1340 (1998).
39.Jin Z-C., Hamberg I., and Granqvist C.G.: Optical properties of sputter-deposited ZnO:Al thin films. J. Appl. Phys. 64(10), 5117 (1988).
40.Petrov I., Barna P.B., Hultman L., and Greene J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol., A 21(5), S117 (2003).
41.Betz U., Olsson M.K., Marthy J., and Escolá M.F.: On the synthesis of ultra smooth ITO thin films by conventional direct current magnetron sputtering. Thin Solid Films 516(7), 1334 (2008).
42.Klöppel A., Kriegseis W., Meyer B.K., Scharmann A., Daube C., Stollenwerk J., and Trube J.: Dependence of the electrical and optical behaviour of ITO-silver-ITO multilayers on the silver properties. Thin Solid Films 365, 139 (2000).
43.Kuriki S. and Kawashima T.: Mechanical properties of Al2O3-doped (2 wt.%) ZnO films. Thin Solid Films 515(24), 8594 (2007).
44.Chang H.P., Wang F.H., Wu J.Y., Kung C.Y., and Liu H.W.: Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment. Thin Solid Films 518(24), 7445 (2010).
45.Konishi R., Noda K., Harada H., and Sasakura H.: The preparation of transparent ZnO: Al thin films. J. Cryst. Growth 117(1–4), 939 (1992).
46.Lee H.W., Lau S.P., Wang Y.G., Tay B.K., and Hng H.H.: Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique. Thin Solid Films 458(1–2), 15 (2004).
47.Agura H., Suzuki A., Matsushita T., Aoki T., and Okuda M.: Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445(2), 263 (2003).
48.Kim H., Piqué A., Horwitz J.S., Murata H., Kafafi Z.H., Gilmore C.M., and Chrisey D.B.: Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 377378, 798 (2000).
49.Ghafoor N., Eriksson F., Persson P.O.Å., Hultman L., and Birch J.: Effects of ion-assisted growth on the layer definition in Cr/Sc multilayers. Thin Solid Films 516(6), 982 (2008).
50.Tungasmita S., Persson P., Hultman L., and Birch J.: Pulsed low-energy ion-assisted growth of epitaxial aluminum nitride layer on 6H-silicon carbide by reactive magnetron sputtering. J. Appl. Phys. 91(6), 3551 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.