Skip to main content Accessibility help
×
Home

In situ electrochemical nanoindentation of FeAl (100) single crystal: Hydrogen effect on dislocation nucleation

  • Afrooz Barnoush (a1), Christian Bies (a1) and Horst Vehoff (a1)

Abstract

The hydrogen effect on dislocation nucleation in FeAl single crystal with (100) surface orientation has been examined with the aid of a specifically designed nanoindentation setup for in situ electrochemical experiments. The effect of the electrochemical potential on the indent load–displacement curve, especially the unstable elastic-plastic transition (pop-in), was studied in detail. The observations showed a reduction in the pop-in load for both samples due to in situ hydrogen charging, which is reproducibly observed within sequential hydrogen charging and discharging. Clear evidence is provided that hydrogen atoms facilitate homogeneous dislocation nucleation.

Copyright

Corresponding author

a) Address all correspondence to this author.e-mail: a.barnoush@matsci.uni-sb.de

References

Hide All
1.Stoloff, N.S. and Liu, C.T.: Environmental embrittlement of iron aluminides. Intermetallics 2, 75 (1994).
2.Cohron, J.W., Lin, Y., Zee, R.H., and George, E.P.: Room-temperature mechanical behavior of FeAl: Effects of stoichiometry, environment, and boron addition. Acta Mater. 46, 6245 (1998).
3.Baker, I., Wu, D., Kruijver, S.O., and George, E.P.: The effects of environment on the room-temperature mechanical behavior of single-slip oriented FeAl single crystals. Mater. Sci. Eng., A 329, 729 (2002).
4.Liu, C.T., George, E.P., Maziasz, P.J., and Schneibel, J.H.: Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design. Mater. Sci. Eng., A 258, 84 (1998).
5.Wittmann, M., Wu, D., Baker, I., George, E.P., and Heatherly, L.: The role of edge and screw dislocations on hydrogen embrittlement of Fe–40Al. Mater. Sci. Eng., A 319, 352 (2001).
6.Borchers, C., Michler, T., and Pundt, A.: Effect of hydrogen on the mechanical properties of stainless steels. Adv. Eng. Mater. 10, 11 (2008).
7.Pundt, A. and Kirchheim, R.: Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 36, 555 (2006).
8.Olden, V., Thaulow, C., Johnsen, R., Ostby, E., and Berstad, T.: Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel. Eng. Fract. Mech. 75, 2333 (2008).
9.Chateau, J.P., Delafosse, D., and Magnin, T.: Numerical simulations of hydrogen-dislocation interactions in fcc stainless steels. Part 1: Hydrogen-dislocation interactions in bulk crystals. Acta Mater. 50, 1507 (2002).
10.Vehoff, H. and Klameth, H.K.: Hydrogen embrittlement and trapping at crack tips in Ni-single crystals. Acta Metall. 33, 955 (1985).
11.Vehoff, H., Laird, C., and Duquette, D.J.: The effects of hydrogen and segregation on fatigue crack nucleation at defined grain-boundaries in nickel bicrystals. Acta Metall. 35, 2877 (1987).
12.Kirchheim, R.: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I.I. Experimental evidence and consequences. Acta Mater. 55, 5139 (2007).
13.Kirchheim, R.: Interaction of hydrogen with dislocations in palladium. 2. Interpretation of activity results by a Fermi-Dirac distribution. Acta Metall. 29, 845 (1981).
14.Ferreira, P.J., Robertson, I.M., and Birnbaum, H.K.: Hydrogen effects on the interaction between dislocations. Acta Mater. 46, 1749 (1998).
15.Bond, G.M., Robertson, I.M., and Birnbaum, H.K.: On the determination of the hydrogen fugacity in an environmental cell TEM facility. Scr. Metall. 20, 653 (1986).
16.Robertson, I.M. and Teter, D.: Controlled environment transmission electron microscopy. Microsc. Res. Tech. 42, 260 (1998).
17.Katz, Y., Tymiak, N., and Gerberich, W.W.: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies. Eng. Fract. Mech. 68, 619 (2001).
18.Henning, M. and Vehoff, H.: Local mechanical behavior and slip band formation within grains of thin sheets. Acta Mater. 53, 1285 (2005).
19.Welsch, M.T., Henning, M., Marx, M., and Vehoff, H.: Measuring the plastic zone size by orientation gradient mapping (OGM) and electron channeling contrast imaging (ECCI). Adv. Eng. Mater. 9, 31 (2007).
20.Yang, B. and Vehoff, H.: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849 (2007).
21.Durst, K., Franke, O., Bohner, A., and Goken, M.: Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825 (2007).
22.Barnoush, A. and Vehoff, H.: In situ electrochemical nanoindenta-tion of a nickel (111) single crystal: Hydrogen effect on pop-in behaviour. Int. J. Mater. Res. 97, 1224 (2006).
23.Nibur, K.A., Bahr, D.F., and Somerday, B.P.: Hydrogen effects on dislocation activity in austenitic stainless steel. Acta Mater. 54, 2677 (2006).
24.Durst, K., Backes, B., Franke, O., and Goken, M.: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).
25.Borchers, C., Laudahn, U., Pundt, A., Fahler, S., Krebs, H.U., and R Kirchheim: Influence of hydrogen loading on the microstructure of niobium-palladium multilayers. Philos. Mag. A 80, 543 (2000).
26.Cizek, J., Prochazka, T., Danis, S., Cieslar, M., Brauer, G., Anwand, W., Kirchheim, R., and Pundt, A.: Hydrogen-induced defects in niobium. J. Alloys Compd. 446, 479 (2007).
27.Pundt, A., Northemann, K., and Schmidt, S.: Hydrogen-related surface modifications of 20 nm thin straight-sided niobium nano-wires and niobium meander-films. J. Alloys Compd. 446, 549 (2007).
28.Barnoush, A. and Vehoff, H.: Electrochemical nanoindentation: A new approach to probe hydrogen/deformation interaction. Scr. Mater. 55, 195 (2006).
29.Barnoush, A. and Vehoff, H.: In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement. Corros. Sci. 50, 259 (2008).
30.Barnoush, A. and Vehoff, H.: Hydrogen embrittlement of aluminum in aqueous environments examined by in situ electrochemical nanoindentation. Scr. Mater. 58, 747 (2008).
31.Frangini, S., Giorgi, R., Lascovich, J., and Mignone, A.: XPS study of passive films formed on an iron-aluminum intermetallic compound in acid-solution. Surf. Interface Anal. 21, 435 (1994).
32.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L.: The injection of plasticity by millinewton contacts. Acta Metall Mater. 43, 1569 (1995).
33.Chiu, Y.L. and Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).
34.Schuh, C.A. and Lund, A.C.: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004).
35.Bei, H., George, E.P., Hay, J.L., and Pharr, G.M.: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 1 (2005).
36.Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M., and Nix, W.D.: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).
37.Minor, A.M., Lilleodden, E.T., Stach, E.A., and Morris, J.W.: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).
38.Harmouche, M.R. and A Wolfenden: Temperature and composition dependence of Young modulus for ordered-B2 polycrystalline-CoAl and polycrystalline-FeAl. Mater. Sci. Eng. 84, 35 (1986).
39.Vailhe, C. and Farkas, D.: Shear faults and dislocation core structure simulations in B2 FeAl. Acta Mater. 45, 4463 (1997).
40.Hirth, J.P. and Lothe, J.: Theory of Dislocations (McGraw-Hill Book Co., New York, 1968).
41.Kittel, C.: Introduction to Solid State Physics, 4th ed. (John Wiley, New York, 1971).
42.Guinea, F., Rose, J.H., Smith, J.R., and Ferrante, J.: Scaling relations in the equation of state, thermal-expansion, and melting of metals. Appl. Phys. Lett. 44, 53 (1984).
43.Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984).
44.Barnoush, A.: Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2008, p. 257.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed