Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Smialek, James L. 2001. Advances in the oxidation resistance of high-temperature turbine materials. Surface and Interface Analysis, Vol. 31, Issue. 7, p. 582.


    Gaudette, F. G. Suresh, S. and Evans, A. G. 2000. Effects of sulfur on the fatigue and fracture resistance of interfaces between γ-Ni(Cr) and α-Al2O3. Metallurgical and Materials Transactions A, Vol. 31, Issue. 8, p. 1977.


    Bonnell, Dawn A. 1998. Local Structure and Properties of Oxide Surfaces: Scanning Probe Analyses of Ceramics. Journal of the American Ceramic Society, Vol. 81, Issue. 12, p. 3049.


    Kiely, J. D. and Bonnell, D. A. 1998. Metal ceramic interface toughness II: Mechanisms of fracture and energy dissipation. Journal of Materials Research, Vol. 13, Issue. 10, p. 2881.


    ×

Metal ceramic interface toughness I: Plasticity on multiple length scales

  • J. D. Kiely (a1) and D. A. Bonnell (a1)
  • DOI: http://dx.doi.org/10.1557/JMR.1998.0393
  • Published online: 01 January 2011
Abstract

The fracture toughness of Ni-sapphire interfaces was measured as a function of interfacial embrittlement. Embrittlement was controlled by segregating sulfur to the interface, by limiting the presence of moist air in the test environment, and by altering the distribution of interfacial particulates. Fracture energies scaled with the degree of embrittlement and ranged from 8.5 to 34.2 J/m2. Scanning probe microscopy revealed four distinct plasticity features, the heights of which ranged from 1 μm to 0.5 nm. Plasticity generation processes are determined based on the variation of feature height and position with fracture energy, allowing features associated with the interface decohesion process to be identified.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.I. E. Reimanis , B. J. Dalgleish , and A. G. Evans , Acta Metall. Mater. 38, 2645 (1991).

2.A. G. Evans and B. J. Dalgleish , Acta Metall. Mater. 40, S295 (1992).

3.H. F. Wang , W. W. Gerberich , and C. J. Skowronek , Acta Metall. Mater. 41, 2425 (1993).

4.L. R. Thompson and R. Raj , Acta Metall. Mater. 42, 2477 (1994).

5.B. J. Dalgleish , K. P. Trumble , and A. G. Evans , Acta Metall. 37, 1923 (1989).

6.D. Korn , G. Elssner , H. F. Fischmeister , and M. Rühle , Acta Metall. Mater. 40, S355 (1992).

8.G. Elssner , D. Korn , and M. Rühle ,Scripta Metall. Mater. 31, 1037 (1994).

9.T. S. Oh , J. Rodel , R. M. Cannon , and R. O. Ritchie , Acta Metall. 36, 2083 (1987).

10.M. R. Turner and A. G. Evans , Acta Mater. 44, 863 (1996).

11.M. Y. He , M. R. Turner , and A. G. Evans , Acta Metall. Mater. 43, 3453 (1995).

13.R. J. Christensen and K. T. Faber , J. Am. Ceram. Soc. 79, 425 (1996).

14.T. A. Michalske , W. L. Smith , and E. P. Chen , Engng. Fract. Mech. 45, 637 (1993).

15.H. Cai , K. T. Faber , and E. R. Fuller Jr, J. Am. Ceram. Soc. 75, 3111 (1992).

16.M. R. Turner , B. J. Dalgleish , M. Y. He , and A. G. Evans , Acta Metall. Mater. 43, 3459 (1995).

19.J. W. Hutchinson and Z. Suo , Adv. Appl. Mech. 29, 63 (1992).

22.K. Burger , W. Mader , and M. Rühle , Ultramicroscopy 22, 1 (1987).

23.K. P. Trumble and M. Rühle , Acta Metall. 39, 1915 (1991).

24.T. Wagner , R. Kirchheim , and M. Rühle , Acta Metall. Mater. 40, S85 (1992).

25.R. A. Henrichsen and C-Y. Li , J. Am. Ceram. Soc. 59, 65 (1976).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×