Skip to main content Accessibility help
×
×
Home

Microstructure and magnetic behavior of FeCoNi(Mn–Si)x (x = 0.5, 0.75, 1.0) high-entropy alloys

  • Priyanka Sahu (a1), Suresh Solanki (a2) (a3), Sheetal Dewangan (a1) and Vinod Kumar (a1)

Abstract

FeCoNi(Mn–Si)x (x = 0.5, 0.75, 1.0) high-entropy alloys (HEAs) were successfully synthesized by mechanical alloying (MA), and the effect of Mn and Si in the ferromagnetic alloys on crystal structure and magnetic behavior was thoroughly investigated. XRD, SEM, and TEM were used to investigate the effect of Mn and Si content on the structure of HEAs. The high Mn and Si contents change the structure from the BCC phase to FCC phase. The evolution of surface morphology was discussed on the basis of MA time and content of Mn and Si. The magnetic hysteresis curve confirmed the highest magnetic saturation (Ms) value of 134.21 emu/g for FeCoNi(Mn–Si)1.0 alloy and an appreciably low coercivity (Hc) of 98.07 Oe for FeCoNi(Mn–Si)0.5 alloy. The finite element method (FEM), using COMSOL Multiphysics software, has been used for determining the magnetic flux density (B) on the surface and at the center of the transformer core to determine the performance of the proposed HEAs.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: vk.iitk@gmail.com

References

Hide All
1.Maulik, O. and Kumar, V.: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116125 (2015).
2.Kumar, D., Maulik, O., Kumar, S., Prasad, Y.V.S.S., and Kumar, V.: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 7177 (2018).
3.Kumar, S., Kumar, D., Maulik, O., Pradhan, A.K., Kumar, V., and Patniak, A.: Synthesis and air jet erosion study of AlxFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall. Mater. Trans. A 49, 56075618 (2018).
4.Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-entropy Alloys (Butterworth-Heinemann, UK, 2014).
5.Kumar, J., Kumar, N., Das, S., Gurao, N.P., and Biswas, K.: Effect of Al addition on the microstructural evolution of equiatomic CoCrFeMnNi alloy. Trans. Indian Inst. Met. 71, 27492758 (2018).
6.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., and Chang, S.Y.: Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).
7.Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213218 (2004).
8.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).
9.Widom, M., Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-entropy Alloys: Fundamentals and Applications (Springer, Switzerland, 2016).
10.Gao, M.C., Zhang, B., Guo, S.M., Qiao, J.W., and Hawk, J.A.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 33223332 (2016).
11.Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 57235734 (2012).
12.Wang, W.R., Wang, W.L., and Yeh, J.W.: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143152 (2014).
13.Chuang, M.H., Tsai, M.H., Wang, W.R., Lin, S.J., and Yeh, J.W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 63086317 (2011).
14.Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214228 (2014).
15.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).
16.Zhang, Z., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O.: Nano scale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).
17.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 57435755 (2013).
18.Jien-Wei, Y.: Recent progress in high entropy alloys. Ann. Chimie Sci. Matériaux 31, 633648 (2006).
19.Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).
20.Osaka, T., Takai, M., Hayashi, K., Ohashi, K., Saito, M., and Yamada, K.: A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392, 796 (1998).
21.Yeh, J.W., Chen, Y.L., Lin, S.J., and Chen, S.K.: High-entropy alloys—A new era of exploitation. In Materials Science Forum, Vol. 560 (Trans Tech Publications, Switzerland, 2007); pp. 19.
22.Cheng, X.M., Zhang, X.K., Zhang, D.Z., Lee, S.H., Duckham, A., Weihs, T.P., Cammarata, R.C., Xiao, J.Q., and Chien, C.L.: Magnetic core loss of ultrahigh strength FeCo alloys. J. Appl. Phys. 93, 71217123 (2003).
23.Duckham, A., Zhang, D.Z., Liang, D., Luzin, V., Cammarata, R.C., Leheny, R.L., Chien, C.L., and Weihs, T.P.: Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater. 51, 40834093 (2003).
24.Lucas, M.S., Mauger, L., Muñoz, J.A., Xiao, Y., Sheets, A.O., Semiatin, S.L., Horwath, J., and Turgut, Z.: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).
25.Zuo, T.T., Li, R.B., Ren, X.J., and Zhang, Y.: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 6068 (2014).
26.Uporov, S., Bykov, V., Pryanichnikov, S., Shubin, A., and Uporova, N.: Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics 83, 18 (2017).
27.Zhang, Y., Zuo, T., Cheng, Y., and Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).
28.Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480486 (2012).
29.Yao, C.Z., Zhang, P., Liu, M., Li, G.R., Ye, J.Q., Liu, P., and Tong, Y.X.: Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 83598365 (2008).
30.Singh, S., Wanderka, N., Kiefer, K., Siemensmeyer, K., and Banhart, J.: Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111, 619622 (2011).
31.Tariq, N.H., Naeem, M., Hasan, B.A., Akhter, J.I., and Siddique, M.: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 7985 (2013).
32.Wang, J., Zheng, Z., Xu, J., and Wang, Y.: Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 5864 (2014).
33.Huang, S., Li, W., Li, X., Schönecker, S., Bergqvist, L., Holmström, E., and Vitos, L.: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 7174 (2016).
34.Prasad, N.K. and Kumar, V.: Structure–magnetic properties correlation in mechanically alloyed nanocrystalline FeCoNi(Mg–Si)x alloy powders. J. Mater. Sci.: Mater. Electron. 27, 1013610146 (2016).
35.Kumar, V., Shekhar, R., Balasubramaniam, R., and Balani, K.: Microstructure evolution and texture development in thermomechanically processed Mg–Li–Al based alloys. Mater. Sci. Eng., A 547, 3850 (2012).
36.Yousefi, M., Sharafi, S., and Mehrolhosseiny, A.: Correlation between structural parameters and magnetic properties of ball milled nano-crystalline Fe–Co–Si powders. Adv. Powder Technol. 25, 752760 (2014).
37.Silva, V.C., Meunier, G., and Foggia, A.: A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy. IEEE Trans. Magn. 31, 21392141 (1995).
38.Williamson, G.K. and Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 2231 (1953).
39.Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addision-Wesley, Massachusetts, 1978); p. 356.
40.Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1184 (2001).
41.Bahrami, A.H. and Sharafi, S.: Evolution of microstructural and magnetic properties of mechanically alloyed Fe–Si powders. Powder Technol. 256, 6774 (2012).
42.Baghbaderani, H.A., Sharafi, S., and Chermahini, M.D.: Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technol. 230, 241246 (2012).
43.Nasibi, S., Shokrollahi, H., Karimi, L., and Janghorban, K.: Investigation of structural, microstructural and magnetic properties of mechanically alloyed amorphous/nanocrystalline Fe32.5Co32.5Nb35 powders. Powder Technol. 228, 404409 (2012).
44.Yousefi, M. and Sharafi, S.: The effect of simultaneous addition of Si and Co on microstructure and magnetic properties of nanostructured iron prepared by mechanical alloying. Mater. Des. 37, 325333 (2012).
45.Khajepour, M. and Sharafi, S.: Structural and magnetic properties of nanostructured Fe50(Co50)–6.5 wt% Si powder prepared by high energy ball milling. J. Alloys Compd. 509, 77297737 (2011).
46.Chitsazan, B., Shokrollahi, H., Behvandi, A., and Ghaffari, M.: Magnetic, structural and micro-structural properties of mechanically alloyed nano-structured Fe48Co48V4 powder containing inter-metallic Co3V. J. Magn. Magn. Mater. 323, 11281133 (2011).
47.Prasad, N.K. and Kumar, V.: Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. J. Mater. Sci.: Mater. Electron. 26, 1010910118 (2015).
48.Bahrami, A.H., Sharafi, S., and Baghbaderani, H.A.: The effect of Si addition on the microstructure and magnetic properties of Permalloy prepared by mechanical alloying method. Adv. Powder Technol. 24, 235241 (2013).
49.Razi, M., Ghasemi, A., and Borhani, G.H.: Microstructural and magnetic properties of nanostructured Fe65Co35 powders prepared by mechanical alloying. In Advanced Materials Research, Vol. 829 (Trans Tech Publications, Switzerland, 2014); pp. 778783.
50.Bitoh, T., Makino, A., Inoue, A., and Masumoto, T.: Random anisotropy model for nanocrystalline soft magnetic alloys with grain-size distribution. Mater. Trans. 44, 20112019 (2003).
51.Neubert, H., Bödrich, T., and Disselnkötter, R.: Transient electromagnetic-thermal fe-model of a spice-coupled transformer including eddy currents with comsolmultiphysics 4.2. In 2011 COMSOL Conference (Stuttgart, 2011); pp. 17.
53.Bödrich, T., Neubert, H., and Disselnkötter, R.: Transient finite element analysis of a SPICE-coupled transformer with COMSOL Multiphysics. In 4th European COMSOL Conference, Vol. 17 (Paris, France, 2010). (No. 19.11).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Sahu et al. supplementary material
Figures A1-A4

 Word (333 KB)
333 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed