Skip to main content

Microstructure characterization and phase field analysis of dendritic crystal growth of γ-U and BCC-Mo dendrite in U–33 at.% Mo fast reactor fuel

  • Sibasis Chakraborty (a1), Gargi Choudhuri (a2), Perepa Subramanya Somayajulu (a3), Renu Agarwal (a4) and Kirity Bhusan Khan (a3)...

U–Mo metallic alloy is considered as an advanced fast reactor and research reactor fuel material. U–33 at.% Mo has a higher melting point than that of pure uranium metal. This provides a higher safety margin against fuel melting and diminishes fuel and clad interaction. The metallic fuels are fabricated through a melting-casting route, and the cast microstructure of U–33 at.% Mo has been characterized using optical microscope, scanning electron microscopy—energy dispersive spectroscopy, and Electron back scattered diffraction. These microstructures show dendrites of two different morphologies: (i) the γ-(U) dendrite with secondary branches and (ii) the equiaxed (Mo) dendrite without secondary branches and surrounded by a peritectic reaction product. In this article, for the first time, a phase field model has been developed for U–Mo alloys to understand the morphological evolution and the associated microsegregation of γ-(U) dendrites in the U–33 at.% Mo alloy. The evolution of the concentration and temperature field with the time and the effect of undercooling on the growth velocity of γ-(U) and (Mo) dendrites has been studied.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Michele Manuel

Hide All
1. Meyer M.K., Gan J., Jue J.F., Keisar D.D., Perez E., Robinson A., Wachs D.M., Woolstenhulme N., Hofman G.L., and Kim Y.S.: Irradiation performance of U–Mo monolithic fuel. Nucl. Eng. Technol. 46(2), 169 (2014).
2. Mariani R.D., Porter D.L., Blackwood V.S., Jones Z.S., Olson D.L., Mishra B., Kennedy J.R., and Hayes S.L.: International Conference on Fast Reactors and Related Fuel Cyles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, 4–7 March (International Atomic Energy Agency, Vienna, 2013). IAEA-CN–199/366; ISSN 0074–1884.
3. Chakraborty S., Choudhuri G., Banerjee J., Agarwal R., Khan K.B., and Kumar A.: Micro-structural study and rietveld analysis of fast reactor fuels: U–Mo fuels. J. Nucl. Mater. 467, 618 (2015).
4. Chang Y.I.: Technical rationale for metal fuel in fast reactors. Nucl. Eng. Technol. 39(3), 161 (2007).
5. Mariani R.D., Porter D.L., Hayes S.L., and Kennedy J.R.: Metallic fuels: The EBR-II legacy and recent advances. Process Chem. 7, 513520 (2012).
6. Landa A., Soderlind P., Grabowski B., Turchi P.E.A., Ruban A.V., and Vitos L.: Ab Initio Study of Advanced Metallic Nuclear Fuels for Fast Breeder Reactors, MRS Spring Meeting, San Francisco, CA, USA, April 9–13 (2012); published in the MRS Proceedings on “Actinides—Basic Science, Applications, and Technology”, 14 pages (LLNL-CONF-552336).
7. Zhang X., Cui Y.F., Xu G.L., Zhu W.J., Liu H.S., Yin B.Y., and Jin Z.P.: Thermodynamic assessment of the U–Mo–Al system. J. Nucl. Mater. 402, 15 (2010).
8. Velikanova T., Bodar A., Artyukh L., Bilous O., Firstov S., and Miracle D.: Titanium-boride composites: Influence of alloying on constitution and properties of titanium–boride eutectic alloys. In Metallic Materials with High Structural Efficiency, Senkov O.N., Miracle D.B., and Fristov S.A., eds. (Kluwer Academic Publishers, Dordrecht, the Netherlands 2004); p. 260.
9. Schaffnit P., Stallybrass C., Konrad J., Stein F., and Weinberg M.: A Scheil–Gulliver model dedicated to the solidification of steel. Calphad 48, 184 (2015).
10. Lavernia E.J. and Srivatsan T.S.: The rapid solidification processing of materials: Science, principles, technology, advances, and applications. J. Mater. Sci. 45, 287 (2010).
11. Schwarz M., Arnold C.B., Aziz M.J., and Herlach D.M.: Dendritic growth velocity and diffusive speed in solidification undercooled dilute Ni–Zr melts. Mater. Sci. Eng., A 226–228, 420 (1997).
12. McFadden G.B., Wheeler A.A., Braun R.J., Coriell S.R., and Sekerka R.F.: Phase-field models for anisotropic interfaces. Phys. Rev. E 48(3), 2016 (1993).
13. Wheeler A.A., Murry B.T., and Schaefer R.J.: Computation of dendrites using a phase field model. Phys. D 66, 243 (1993).
14. Wheeler A.A., Boettinger W.J., and McFaden G.B.: Phase-field model of solute trapping during solidification. Phys. Rev. E 47(3), 1893 (1993).
15. Wang S.L., Sekerka R.F., Wheeler A.A., Murry B.T., Coriell S.R., Braun R.J., and McFaden G.B.: Thermodynamically-consistent phase field models for solidification. Phys. D 69, 189 (1993).
16. Boettinger W.J., Wheeler A.A., Murry B.T., and McFadden G.B.: Prediction of solute trapping at high solidification rates using a diffuse interface phase-field theory of alloy solidification. Mater. Sci. Eng., A 178, 217 (1994).
17. Boettinger W.J. and Warren J.A.: The phase field method: Simulation of alloy dendritic solidification during recalescence. Metall. Mater. Trans. A 27, 657 (1996).
18. Dinsdale A.T.: SGTE data for pure elements. Calphad 15, 317 (1991).
19. Thermophysical Properties of Materials for Nuclear Engineering: A tutorial and collection of data, Chapter: Metallic fuel, Uranium, Kirikov P.L., ed. (International Atomic Energy Agency, Vienna, 2006); p. 15.
20. Determining the thermophysical properties of molybdenum, by NETZSCH-Geratebau GmbH, 26th June 2013, on internet site, Available at: (accessed November 12, 2016).
21. Chemical engineering division research highlights: May 1962-April 1963, ANL-6766, Research reports, 38.
22. Rothman S.J.: Diffusion in Uranium, Its Alloys and Compounds, 1961, ANL-5700, part C.
23. Palinov V., Nakonechnikov A.I., and Bykov V.N.: Diffusion of uranium in molybdenum, niobium, zirconium and titanium. At. Energ. 19(6), 521 (1965).
24. Huang K., Keiser D.D. Jr., and Sohn Y.: Interdiffusion intrinsic diffusion, atomic mobility, and vacancy wind effect in c(bcc) uranium–molybdenum alloy. Metall. Mater. Trans. A 44, 738 (2013).
25. Askill J. and Tomlin D.H.: Self-diffusion in molybdenum. Philos. Mag. 8(90), 997 (1963).
26. Loginova S. and Singer H.M.: The phase field technique for modeling multiphase materials. Rep. Prog. Phys. 71, 106501 (2008).
27. Hoyt J.J., Asta M., and Karma A.: Atomistic and continuum modeling of dendritic solidification. Mater. Sci. Eng., R 41, 121 (2003).
28. Hoyt J.J., Asta M., and Karma A.: Atomistic simulation methods for computing the kinetic coefficient in solid-liquid systems. Interface Sci. 10, 181 (2002).
29. Coriell S.R. and Turnbull D.: Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall. 30, 2135 (1982).
30. Vinet B., Magnusson L., Fredriksson H., and Desre P.J.: Correlations between surface and interface energies with respect to crystal nucleation. J. Colloid Interface Sci. 255(4), 363 (2002).
31. Glicksman M.E., Lowengrub J.S., and Li S.: Non-monotone temperature boundary conditions in dendritic growth. In Modelling of Casting, Welding and Advanced Solidification Processing XI, Available at:∼lowengrb/RESEARCH/publications/MCWASP_XI_8MEG.pdf (accessed December 3, 2016).
32. Glicksman M.E.: Mechanism of dendritic branching. Metall. Mater. Trans. A 43, 391 (2012).
33. Mullis A.M.: Deterministic side-branching during thermal dendritic growth. Mater. Sci. Eng. 84, 012071 (2015).
34. Mullins W. and Sekerka R.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444 (1964).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 56 *
Loading metrics...

* Views captured on Cambridge Core between 9th November 2017 - 24th November 2017. This data will be updated every 24 hours.