Skip to main content
×
×
Home

Nanoindentation of compliant materials using Berkovich tips and flat tips

  • Congrui Jin (a1) and Donna M. Ebenstein (a2)
Abstract
Abstract

Nanoindentation testing of compliant materials has recently attracted substantial attention. However, nanoindentation is not readily applicable to softer materials, as numerous challenges remain to be overcome. One key concern is the significant effect of adhesion between the indenter tip and the sample, leading to larger contact areas and higher contact stiffness for a given applied force relative to the Hertz model. Although the nano-Johnson–Kendall–Roberts (JKR) force curve method has demonstrated its capabilities to correct for errors due to adhesion, it has not been widely adopted, mainly because it works only with perfectly spherical tips. In this paper, we successfully extend the nano-JKR force curve method to include Berkovich and flat indenter tips by conducting numerical simulations in which the adhesive interactions are represented by an interaction potential and the surface deformations are coupled by using half-space Green’s functions discretized on the surface.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: cjin@binghamton.edu
References
Hide All
1. ISO standard 14577: Metallic materials—Instrumented indentation test for hardness and materials parameter. Part 1, part 2 and part 3, 2003; part 4, 2007.
2. Ebenstein D.M. and Pruitt L.A.: Nanoindentation of biological materials. Nano Today 1, 26 (2006).
3. Ebenstein D.M.: Nanoindentation of soft tissues and other biological materials. In Handbook of Nanoindentation with Biological Applications, Oyen M.L., ed. (Pan Stanford Publishing, Singapore, 2010); p. 350.
4. Kaufman J.D., Miller G.J., Morgan E.F., and Klapperich C.M.: Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. J. Mater. Res. 23, 1472 (2008).
5. Kaufman J.D. and Klapperich C.M.: Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J. Mech. Behav. Biomed. Mater. 2, 312 (2009).
6. Deuschle J., Enders S., and Arzt E.: Surface detection in nanoindentation of soft polymers. J. Mater. Res. 22, 3107 (2007).
7. Van Landingham M.R., Villarrubia J.S., Guthrie W.F., and Meyers G.F.: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).
8. Carrillo F., Gupta S., Balooch M., Marshall S.J., Marshall G.W., Pruitt L., and Puttlitz C.M.: Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 20, 2820 (2005).
9. Ebenstein D.M. and Wahl K.J.: A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652 (2006).
10. Gupta S., Carrillo F., Li C., Pruitt L., and Puttlitz C.: Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater. Lett. 61, 448 (2007).
11. Franke O., Goken M., and Hodge A.M.: The nanoindentation of soft tissue: Current and developing approaches. JOM 60, 49 (2008).
12. Tang B. and Ngan A.H.W.: Nanoindentation measurement of mechanical properties of soft solid covered by a thin liquid film. Soft Matter 5, 169 (2007).
13. Cao Y.F., Yang D.H., and Soboyejoy W.: Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20, 2004 (2005).
14. Grunlan J.C., Xinyun X., Rowenhorst D., and Gerberich W.W.: Preparation and evaluation of tungsten tips relative to diamond for nanoindentation of soft materials. Rev. Sci. Instrum. 72, 2804 (2001).
15. Deuschle J.K., Buerki G., Deuschle H.M., Enders S., Michler J., and Arzt E.: In situ indentation testing of elastomers. Acta Mater. 56, 4390 (2008).
16. Wang Z., Volinsky A.A., and Gallant N.D.: Nanoindentation study of polydimethylsiloxane elastic modulus using Berkovich and flat punch tips. J. Appl. Polym. Sci. 132, 41384 (2015).
17. De Paoli F. and Volinsky A.A.: Obtaining full contact for measuring polydimethylsiloxane mechanical properties with flat punch nanoindentation. MethodsX 2, 374 (2015).
18. Buffinton C.M., Tong K.J., Blaho R.A., Buffinton E.M., and Ebenstein D.M.: Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing. J. Mech. Behav. Biomed. Mater. 51, 367 (2015).
19. Tong K.J. and Ebenstein D.M.: Comparison of spherical and flat tips for indentation of hydrogels. JOM 67, 713 (2015).
20. Kohn J.C. and Ebenstein D.M.: Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels. J. Mech. Behav. Biomed. Mater. 20, 316 (2013).
21. Ferguson V.L., Bushby A.J., and Boyde A.: Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203, 191 (2003).
22. Leong P.L. and Morgan E.F.: Measurement of fracture callus material properties via nanoindentation. Acta Biomaterialia 4, 1569 (2008).
23. Ebenstein D.M.: Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water. J. Mater. Res. 28, 1026 (2011).
24. Alisafaei F., Han C-S., and Sanei S.H.R.: On the time and indentation depth dependence of hardness, dissipation and stiffness in poly-dimethylsiloxane. Polym. Test. 32, 1220 (2013).
25. Klapperich C., Pruitt L., and Komvopoulos K.: Nanomechanical properties of energetically treated polyethylene surfaces. J. Mater. Res. 17, 423 (2002).
26. Johnson K.L.: Contact Mechanics (Cambridge University Press, Cambridge, 1985).
27. Oliver W.C. and Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
28. Borodich F.M. and Galanov B.A.: Non-direct estimations of adhesive and elastic properties of materials by depth-sensing indentation. Proc. R. Soc., Ser. A 464, 2759 (2008).
29. Berkovich E.S.: Three-faced diamond pyramid for micro-hardness testing. Int. Diamond Rev. 11, 129 (1951).
30. Sneddon I.A.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
31. Tabor D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2 (1977).
32. Barthel E.: Adhesive elastic contacts: JKR and more. J. Phys. D: Appl. Phys. 41, 163001 (2008).
33. Muller V.M., Yushchenko V.S., and Derjaguin B.V.: On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77, 91 (1980).
34. Greenwood J.A.: Adhesion of elastic spheres. Proc. R. Soc. London, Ser. A 453, 1277 (1997).
35. Galanov B.A.: Development of analytical and numerical methods for study of models of materials. In Report for the Project 7.06.00/001-92, 7.06.00/015-92. (Institute for Problems in Materials Science, Kiev, Ukrainian, 1993).
36. Borodich F.M.: Hertz type contact problems for power-law shaped bodies. In Contact Problems: The Legacy of L.A. Galin, Gladwell G.M.L., ed. (Springer, Dordrecht, Netherlands, 2008); p. 261.
37. Borodich F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225 (2014).
38. Jin C., Jagota A., and Hui C-Y.: An easy-to-implement numerical simulation method for adhesive contact problems involving asymmetric adhesive contact. J. Phys. D: Appl. Phys. 44, 405303 (2011).
39. Giannakopoulos A.E., Larsson P-L., and Vestregaard R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2670 (1994).
40. Larsson P-L., Giannakopoulos A.E., Soderlund E., Rowcliffe D.J., and Vestergaard R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996).
41. Chudoba T. and Jennett N.: Higher accuracy analysis of instrumented indentation data obtained with pointed indenters. J. Phys. D: Appl. Phys. 41, 215407 (2008).
42. Israelachvili J.N.: Intermolecular and Surface Forces, 2nd ed. (Academic, San Diego, 1992).
43. Hui C-Y., Jagota A., Bennison S.J., and Londono J.D.: Crack blunting and the strength of soft elastic solids. Proc. R. Soc. London, Ser. A 459, 1489 (2003).
44. Tang T., Hui C.Y., Jagota A., and Chaudhury M.K.: Thermal fluctuations limit the adhesive strength of compliant solids. J. Adhes. 82, 671 (2006).
45. Johnson K.L. and Greenwood J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326 (1997).
46. Kogut L. and Etsion I.: Adhesion in elastic-plastic spherical microcontact. J. Colloid Interface Sci. 261, 372 (2003).
47. Du Y., Chen L., McGruer N.E., Adams G.G., and Etsion I.: A finite element model of loading and unloading of an asperity contact with adhesion and plasticity. J. Colloid Interface Sci. 312, 522 (2007).
48. Song Z. and Komvopoulos K.: Adhesion-induced instabilities in elastic and elastic–plastic contacts during single and repetitive normal loading. J. Mech. Phys. Solids 59, 884 (2011).
49. Jagota A. and Argento C.: An intersurface stress tensor. J. Colloid Interface Sci. 191, 326 (1997).
50. Yu N. and Polycarpou A.: Adhesive contact based on the Lennard–Jones potential: A correction to the value of the equilibrium distance as used in the potential. J. Colloid Interface Sci. 278, 428 (2004).
51. Borodich F.M., Galanov B.A., Keer L.M., and Suarez-Alvarez M.M.: The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 34 (2014).
52. Fafard M. and Massicotte B.: Geometrical interpretation of the arc-length method. Comput. Struct. 46, 603 (1993).
53. Jin C., Khare K., Vajpayee S., Yang S., Jagota A., and Hui C-Y.: Adhesive contact between a rippled elastic surface and a rigid spherical indenter: From partial to full contact. Soft Matter 7, 10728 (2011).
54. Borodich F.M., Galanov B.A., and Suarez-Alvarez M.M.: The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. J. Mech. Phys. Solids 68, 14 (2014).
55. Spolenak R., Gorb S., Gao H., and Arzt E.: Effects of contact shape on biological attachments. Proc. R. Soc. London, Ser. A 461, 305 (2005).
56. McElhaney K.W., Vlassak J.J., and Nix W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).
57. Johnston I.D., McCluskey D.K., Tan C.K.L., and Tracey M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014).
58. Sharfeddin A., Volinsky A.A., Mohan G., and Gallant N.D.: Comparison of the macroscale and microscale tests for measuring elastic properties of polydimethylsiloxane. J. Appl. Polym. Sci. 132, 42680 (2015).
59. Shull K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng., R 36, 1 (2002).
60. Yu Y.L., Sanchez D., and Lu N.S.: Work of adhesion/separation between soft elastomers of different mixing ratios. J. Mater. Res. 30, 2702 (2015).
61. Smith R.L. and Sutherland G.E.: Some notes on the use of a diamond pyramid for hardness testing. Iron Steel Inst. 1, 285 (1925).
62. Knoop F., Peters C.G., and Emerson W.B.: A sensitive pyramidal-diamond tool for indentation measurements. J. Res. Natl. Bur. Stand. 23, 39 (1939).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 40
Total number of PDF views: 138 *
Loading metrics...

Abstract views

Total abstract views: 425 *
Loading metrics...

* Views captured on Cambridge Core between 27th December 2016 - 18th December 2017. This data will be updated every 24 hours.