Skip to main content Accessibility help
×
Home

Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl2O4

  • Guillaume Bernard-Granger (a1), Nassira Benameur (a1), Ahmed Addad (a2), Mats Nygren (a3), Christian Guizard and Sylvain Deville (a1)...

Abstract

Spark plasma sintering (SPS) of MgAl2O4 powder was investigated at temperatures between 1200 and 1300 °C. A significant grain growth was observed during densification. The densification rate always exhibits at least one strong minimum, and resumes after an incubation period. Transmission electron microscopy investigations performed on sintered samples never revealed extensive dislocation activity in the elemental grains. The densification mechanism involved during SPS was determined by anisothermal (investigation of the heating stage of a SPS run) and isothermal methods (investigation at given soak temperatures). Grain-boundary sliding, accommodated by an in-series {interface-reaction/lattice diffusion of the O2 anions} mechanism controlled by the interface-reaction step, governs densification. The zero-densification-rate period, detected for all soak temperatures, arise from the difficulty of annealing vacancies, necessary for the densification to proceed. The detection of atomic ledges at grain boundaries and the modification of the stoichiometry of spinel during SPS could be related to the difficulty to anneal vacancies at temperature soaks.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: guillaume.bernard-granger@saint-gobain.com

References

Hide All
1Harris, D.C.: History of development of polycrystalline optical spinel in the U.S. Proc. SPIE 5786, 1 (2005).
2Mroz, T.J., Hartnett, T.M., Wahl, J.M., Goldman, L.M., Kirsch, J., and Lindberg, W.R.: Recent advances in spinel optical ceramics. Proc. SPIE 5786, 64 (2005).
3Roy, W.D.: Hot-pressed MgAl2O4 for ultraviolet (UV), visible, and infrared (IR) optical requirements. Proc. SPIE 297, 13 (1981).
4Baudin, C., Martinez, R., and Pena, P.: High-temperature mechanical behavior of stoichiometric magnesium spinel. J. Am. Ceram. Soc. 78, 1857 (1995).
5Krell, A.: Transparent polycrystalline sintered ceramic of cubic crystal structure. U.S. Patent No. 7 247 589 B2 (2007).
6Krell, A. and Strassburger, E.: Ballistic strength of opaque and transparent armors. Am. Ceram. Soc. Bull. 86, 9201 (2007).
7Groza, J.R., Curtis, J.D., and Kraämer, M.: Field-assisted sintering of nanocrystalline titanium nitride. J. Am. Ceram. Soc. 83, 1281 (2000).
8Shen, Z., Johnsson, M., Zhao, Z., and Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002).
9Kim, B.N., Hiraga, K., Morita, K., and Yoshida, H.: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 (2007).
10Suganuma, M., Kitagawa, Y., Wada, S., and Murayama, N.: Pulsed electric current sintering of silicon nitride. J. Am. Ceram. Soc. 86, 387 (2003).
11Bernard-Granger, G. and Guizard, C.: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 (2007).
12Bangchao, Y., Jiawen, J., and Yican, Z.: Spark-plasma sintering the 8-mol% yttria-stabilized zirconia electrolyte. J. Mater. Sci. Lett. 39, 6863 (2004).
13Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Ohyanagi, M., and Munir, Z.A.: Consolidation of nanostructured b-SiC by spark plasma sintering. J. Am. Ceram. Soc. 87, 1436 (2004).
14Frage, N., Cohen, S., Meir, S., Kalabukhov, S., and Dariel, M.P.: Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J. Mater. Sci. 42, 3273 (2007).
15Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J., and Biest, O. Van der: Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379 (2005).
16Cappellen, E. Van and Doukhan, J.C.: Quantitative transmission x-ray microanalysis of ionic compounds. Ultramicroscopy 53, 343 (1994).
17Bernard-Granger, G., Guizard, C., and Addad, A.: Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material. J. Am. Ceram. Soc. 91, 1703 (2008).
18Brook, R.J., Gilbert, E., Hind, D., and Vieira, J.M.: Sintering– Theory and Practice, edited by Kolar, D., Pejovnik, S., and Ristic, M.M. (Elsevier, Amsterdam, 1982), p. 585.
19Coble, R.L.: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 (1970).
20Mukherjee, A.K., Bird, J.E., and Dorn, J.E.: Experimental correlations for high-temperature creep. Trans. ASM 62, 155 (1969).
21Bernard-Granger, G. and Guizard, C.: Densification mechanism involved during spark plasma sintering of a co-doped a-alumina material. I: Formal sintering analysis. J. Mater. Res. 24(1), 179 (2009).
22White, K.W. and Kelkar, G.P.: Fracture mechanisms of a coarse-grained, transparent MgAl2O4 at elevated temperatures. J. Am. Ceram. Soc. 75, 3440 (1992).
23Ting, C.J. and Lu, H.Y.: Hot pressing of magnesium aluminate spinel: I. Kinetics and densification mechanism. Acta Mater. 47, 817 (1999).
24Panda, P.C., Raj, R., and Morgan, P.E.D.: Superplastic deformation in fine-grained MgO 2A12O3 spinel. J. Am. Ceram. Soc. 68, 522 (1985).
25Morita, K., Hiraga, K., Kim, B.N., Suzuki, T.S., and Sakka, Y.: Strain softening and hardening during superplastic-like flow in a fine-grained MgAl2O4 spinel polycrystal. J. Am. Ceram. Soc. 87, 1102 (2004).
26Ashby, M.F. and Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 (1973).
27Burton, B.: The characteristic equation for superplastic flow. Philos. Mag. A 48, L9 (1983).
28Reddy, K.P.R. and Cooper, A.R.: Oxygen diffusion in magnesium aluminate spinel. J. Am. Ceram. Soc. 64, 368 (1981).
29Ando, K. and Oishi, Y.: Effect of ratio of surface area to volume on self-diffusion coefficients determined for crushed MgO–Al2O3 spinels. J. Am. Ceram. Soc. 66, C131 (1983).
30Ting, C.J. and Lu, H.Y.: Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel. J. Am. Ceram. Soc. 82, 841 (1999).
31Liermann, H.P. and Ganguly, J.: Diffusion kinetics of Fe2+ and Mg in aluminous spinel. Experimental determination and applications. Geochim. Cosmochim. Acta 66, 2903 (2002).
32Martinelli, J.R., Sonder, E., Weeks, R.A., and Zuhr, R.A.: Mobility of cations in magnesium aluminate spinel. Phys. Rev. B 33, 5698 (1986).
33Watson, E.B. and Price, J.D.: Kinetics of the reaction MgO + Al2O3 MgAl2O4 and Mg–Al interdiffusion in spinel at 1200 to 2000C and 1.0 to 4.0 GPa. Geochim. Cosmochim. Acta 66, 2123 (2002).
34Murphy, S.T., Uberuaga, B.P., Ball, J.B., Cleave, A.R., Sickafus, K.E., Smith, R., and Grimes, R.W.: Cation diffusion in magnesium aluminate spinel. Solid State Ionics (2008, Doi: 10.1016/j.ssi.2008.10.013).
35Kliever, K.L. and Koehler, J.S.: Space charge in ionic crystals: I. General approach with application to NaCl. Phys. Rev. A 140, 1226 (1965).
36Chiang, Y.M. and Kingery, W.D.: Grain boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: II. Effects of grain boundary nonstoichiometry. J. Am. Ceram. Soc. 73, 1153 (1990).
37Nuns, N., Bäclin, F., and Crampon, J.: Space charge characterisation by EDS microanalysis in spinel MgAl2O4. J. Eur. Ceram. Soc. 25, 2809 (2005).

Keywords

Related content

Powered by UNSILO

Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl2O4

  • Guillaume Bernard-Granger (a1), Nassira Benameur (a1), Ahmed Addad (a2), Mats Nygren (a3), Christian Guizard and Sylvain Deville (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.