Skip to main content
×
Home

Piezoelectric and mechanical properties of structured PZT–epoxy composites

  • Nijesh Kunnamkuzhakkal James (a1), Daan van den Ende (a2), Ugo Lafont (a3), Sybrand van der Zwaag (a3) and Wilhelm A. Groen (a4)...
Abstract
Abstract

Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage on piezoelectric properties of the composites is studied for various volume fractions of PZT composites. The experimentally observed piezoelectric and dielectric properties have been compared with theoretical models. Dielectrophoretically structured composites exhibit higher piezoelectric voltage coefficients compared to 0–3 composites. Structured composites with 0.1 volume fraction of PZT have the highest piezoelectric voltage coefficient. The flexural strength and bending modulus of the structured and random composites were analyzed using three-point bending tests.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: n.kunnamkuzhakkaljames@tudelft.nl
References
Hide All
1.Gururaja T.R., Schulze W.A., Cross L.E., Newnham R.E., Auld B.A., and Wang Y.J.: Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Son. Ultrason. 32, 481 (1985).
2.Akdogan E.K., Allahverdi M., and Safari A.: Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746 (2005).
3.Newnham R.E., Bowen L.J., Klicker K.A., and Cross L.E.: Composite piezoelectric transducers. J. Mater. Eng. 2, 93 (1980).
4.Newnham R.E., Skinner D.P., and Cross L.E.: Connectivity and piezoelectric and pyroelectric composite. Mater. Res. Bull. 13, 525 (1978).
5.McNulty T.F., Janas V.F., and Safari A.: Novel processing of 1-3 ceramic/polymer composites for transducer applications. J. Am. Ceram. Soc. 78, 2913 (1995).
6.Taunaumang H., Guy I.L., and Chan H.L.W.: Electromechanical properties of 1-3 piezoelectric ceramic/polymer composites. J. Appl. Phys. 76, 484 (1994).
7.Panda R.K., Janas V.F., and Safari A.: Fabrication and properties of fine scale 1-3 piezoelectric ceramic/polymer composites for ultrasonic transducer applications. In Proceedings of the 10th IEEE International Symposium Applications of Ferroelectrics, 1996; J.W. Silwa, Jr., S. Ayter, J.P. Mohr, ed., IEEE, Piscataway, NJ, 1996. p. 551.
8.Dias C.J. and Das Gupta K.D.: Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 39, 706 (1996).
9.Klicker K.A., Biggers J.V., and Newnham R.E.: Piezoelectric composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5 (1981).
10.Silwa J.W., Ayter J.S., and Mohr III: Method for making piezoelectric composite. U.S. Patent No. 5 239 736, 1993.
11.Bast U., Kaarmann H., Lubitz K., Vogt M., Wersing W., and Carmer D.: Composite ultrasound transducer for manufacturing a structured component therefor of piezoelectric ceramic. U.S. Patent No. 5 164 920, 1992.
12.Livneh S., Janas V., and Safari A.: Development of fine scale PZT ceramic fiber/polymer shell composite transducer. J. Am. Ceram. Soc. 78, 1900 (1995).
13.Safari A., Allahverdi M., and Akdogan E.K.: Solid freeform fabrication of piezoelectric sensors and actuators. J. Mater. Sci. 41, 177 (2006).
14.Jans V.F. and Safari A.: Overview of fine-scale piezoelectric ceramic/polymer composite processing. J. Am. Ceram. Soc. 78, 2945 (1995).
15.Bowen C.P., Shrout T.R., Newnham R.E., and Randall C.A.: Tunable electric field processing of composite materials. J. Intell. Mater. Syst. Struct. 6, 159 (1995).
16.van den Ende D.A., Bory B.F., Groen W.A., and van der Zwaag S.: Improving the d33 and g33 properties of 0–3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 107, 024107 (2010).
17.Randall C.A., Miller D.V., Adair J.H., and Bhalla A.S.: Processing of electroceramic-polymer composites using the electrorheological effect. J. Mater. Res. 8, 899 (1993).
18.Wilson S.A., Maistros G.M., and Whatmore R.W.: Structure modification of 0-3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D: Appl. Phys. 38, 175 (2005).
19.Park C. and Robertson R.E.: Aligned microstructure of some particulate polymer composites obtained with an electric field. J. Mater. Sci. 33, 3541 (1998).
20.Yamada T., Ueda T., and Kitayama T.: Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328 (1982).
21.Furukawa T., Fujino K., and Fukada E.: Electromechanical properties in the composites of epoxy-resin and PZT ceramics. Jpn. J. Appl. Phys. 15, 2119 (1976).
22.Furukawa T., Ishida T.K., and Fukada E.: Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys. 50, 4904 (1979).
23.Bowen C.P., Newnham R.E., and Randall C.A.: Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 13, 205 (1998).
24.Zakari T., Laurent J.P., and Vaculin M.: Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory. J. Phys. D: Appl. Phys. 31, 1589 (1998).
25.Lichtenecker K.: Dielectric constant of natural and synthetic mixtures. Phys. Z. 27, 115 (1926).
26.Dowling N.E.: Mechanical Behaviour of Materials: Engineering Materials for Deformation, Fracture, and Fatigue (Prentice-Hall Inc., Englewood Cliffs, NJ, 1993).
27.van den Ende D.A., De Almeida P., and van der Zwaag S.: Piezoelectric and mechanical properties of novel composites of PZT and a liquid crystalline thermosetting resin. J. Mater. Sci. 42, 6417 (2007).
28.Babu I., van den Ende D.A., and De With G.: Processing and characterization of piezoelectric 0-3 PZT/LCT/PA composites. J. Phys. D: Appl. Phys. 43, 425402 (2010).
29.Hiremath B.V., Kingon A., and Biggers J.V.: Reaction sequence in the formation of lead zirconate-lead titanate solid solution: Role of raw materials. J. Am. Ceram. Soc. 66(11), 790793 (1983).
30.van den Ende D.A., Groen W.A., and van der Zwaag S.: The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer. J. Electroceram. 27, 13 (2011).
31.Lee M.H., Halliyal A., and Newnham R.E.: Poling of coprecipitated lead titanate-epoxy 0–3 composites. J. Am. Ceram. Soc. 72, 986 (1989).
32.Rasband W.S.: IMAGEJ (U.S. National Institutes of Health, Bethesda, MD, 2007).
33.Rashid E.S.A., Akil H.M., Ariffin K., and Choong Kooi C.: The mechanical and thermal properties of alumina filled epoxy. In Proceedings of 31st International Conference on Electronics Manufacturing and Technology, (IEEE Publications, New Brunswick, NJ, 2006); p. 282.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 196 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.