Skip to main content
    • Aa
    • Aa

Piezoelectric and mechanical properties of structured PZT–epoxy composites

  • Nijesh Kunnamkuzhakkal James (a1), Daan van den Ende (a2), Ugo Lafont (a3), Sybrand van der Zwaag (a3) and Wilhelm A. Groen (a4)...

Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage on piezoelectric properties of the composites is studied for various volume fractions of PZT composites. The experimentally observed piezoelectric and dielectric properties have been compared with theoretical models. Dielectrophoretically structured composites exhibit higher piezoelectric voltage coefficients compared to 0–3 composites. Structured composites with 0.1 volume fraction of PZT have the highest piezoelectric voltage coefficient. The flexural strength and bending modulus of the structured and random composites were analyzed using three-point bending tests.

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T.R. Gururaja , W.A. Schulze , L.E. Cross , R.E. Newnham , B.A. Auld , and Y.J. Wang : Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Son. Ultrason. 32, 481 (1985).

E.K. Akdogan , M. Allahverdi , and A. Safari : Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746 (2005).

R.E. Newnham , D.P. Skinner , and L.E. Cross : Connectivity and piezoelectric and pyroelectric composite. Mater. Res. Bull. 13, 525 (1978).

T.F. McNulty , V.F. Janas , and A. Safari : Novel processing of 1-3 ceramic/polymer composites for transducer applications. J. Am. Ceram. Soc. 78, 2913 (1995).

H. Taunaumang , I.L. Guy , and H.L.W. Chan : Electromechanical properties of 1-3 piezoelectric ceramic/polymer composites. J. Appl. Phys. 76, 484 (1994).

R.K. Panda , V.F. Janas , and A. Safari : Fabrication and properties of fine scale 1-3 piezoelectric ceramic/polymer composites for ultrasonic transducer applications. In Proceedings of the 10th IEEE International Symposium Applications of Ferroelectrics, 1996; J.W. Silwa, Jr., S. Ayter, J.P. Mohr, ed., IEEE, Piscataway, NJ, 1996. p. 551.

K.A. Klicker , J.V. Biggers , and R.E. Newnham : Piezoelectric composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5 (1981).

S. Livneh , V. Janas , and A. Safari : Development of fine scale PZT ceramic fiber/polymer shell composite transducer. J. Am. Ceram. Soc. 78, 1900 (1995).

A. Safari , M. Allahverdi , and E.K. Akdogan : Solid freeform fabrication of piezoelectric sensors and actuators. J. Mater. Sci. 41, 177 (2006).

V.F. Jans and A. Safari : Overview of fine-scale piezoelectric ceramic/polymer composite processing. J. Am. Ceram. Soc. 78, 2945 (1995).

C.P. Bowen , T.R. Shrout , R.E. Newnham , and C.A. Randall : Tunable electric field processing of composite materials. J. Intell. Mater. Syst. Struct. 6, 159 (1995).

D.A. van den Ende , B.F. Bory , W.A. Groen , and S. van der Zwaag : Improving the d33 and g33 properties of 0–3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 107, 024107 (2010).

S.A. Wilson , G.M. Maistros , and R.W. Whatmore : Structure modification of 0-3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D: Appl. Phys. 38, 175 (2005).

T. Yamada , T. Ueda , and T. Kitayama : Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328 (1982).

21. T. Furukawa , K. Fujino , and E. Fukada : Electromechanical properties in the composites of epoxy-resin and PZT ceramics. Jpn. J. Appl. Phys. 15, 2119 (1976).

T. Furukawa , T.K. Ishida , and E. Fukada : Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys. 50, 4904 (1979).

T. Zakari , J.P. Laurent , and M. Vaculin : Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory. J. Phys. D: Appl. Phys. 31, 1589 (1998).

D.A. van den Ende , P. De Almeida , and S. van der Zwaag : Piezoelectric and mechanical properties of novel composites of PZT and a liquid crystalline thermosetting resin. J. Mater. Sci. 42, 6417 (2007).

I. Babu , D.A. van den Ende , and G. De With : Processing and characterization of piezoelectric 0-3 PZT/LCT/PA composites. J. Phys. D: Appl. Phys. 43, 425402 (2010).

B.V. Hiremath , A. Kingon , and J.V. Biggers : Reaction sequence in the formation of lead zirconate-lead titanate solid solution: Role of raw materials. J. Am. Ceram. Soc. 66(11), 790793 (1983).

D.A. van den Ende , W.A. Groen , and S. van der Zwaag : The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer. J. Electroceram. 27, 13 (2011).

M.H. Lee , A. Halliyal , and R.E. Newnham : Poling of coprecipitated lead titanate-epoxy 0–3 composites. J. Am. Ceram. Soc. 72, 986 (1989).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *