Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 20
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Paik, Young Hun Kojori, Hossein Shokri and Kim, Sung Jin 2016. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles. Nanotechnology, Vol. 27, Issue. 7, p. 075204.


    Maslovskaya, A. and Pavelchuk, A. 2015. Simulation of Dynamic Charging Processes in Ferroelectrics Irradiated with SEM. Ferroelectrics, Vol. 476, Issue. 1, p. 1.


    Ng, Nathaniel Ahluwalia, Rajeev Kumar, Ashok Srolovitz, David J. Chandra, Premala and Scott, James F. 2015. Electron-beam driven relaxation oscillations in ferroelectric nanodisks. Applied Physics Letters, Vol. 107, Issue. 15, p. 152902.


    Rault, J. E. Menteş, T. O. Locatelli, A. and Barrett, N. 2014. Reversible switching of in-plane polarized ferroelectric domains in BaTiO3(001) with very low energy electrons. Scientific Reports, Vol. 4, p. 6792.


    Ahluwalia, R. Ng, N. Schilling, A. McQuaid, R. G. P. Evans, D. M. Gregg, J. M. Srolovitz, D. J. and Scott, J. F. 2013. Manipulating Ferroelectric Domains in Nanostructures Under Electron Beams. Physical Review Letters, Vol. 111, Issue. 16,


    Kokhanchik, L. S. and Volk, T. R. 2013. Domain inversion in LiNbO3 and Zn-doped LiNbO3 crystals by the electron-beam irradiation of the nonpolar Y-surface. Applied Physics B, Vol. 110, Issue. 3, p. 367.


    Maslovskaya, A. and Barabash, T. 2013. Dynamic Simulation of Polarization Reversal Processes in Ferroelectric Crystals under Electron Beam Irradiation. Ferroelectrics, Vol. 442, Issue. 1, p. 18.


    Maslovskaya, A. G. 2013. Physical and mathematical modeling of the electron-beam-induced charging of ferroelectrics during the process of domain-structure switching. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, Vol. 7, Issue. 4, p. 680.


    Kokhanchik, L. S. Borodin, M. V. Burimov, N. I. Shandarov, S. M. Shcherbina, V. V. and Volk, T. R. 2012. Surface periodic domain structures for waveguide applications. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 59, Issue. 6, p. 1076.


    Maslovskaya, A.G. and Barabash, T.K. 2012. Multifractal analysis of electron beam stimulated process of polarization reversal in ferroelectrics. Physics Procedia, Vol. 23, p. 81.


    Conklin, David Park, Tae-Hong Nanayakkara, Sanjini Therien, Michael J. and Bonnell, Dawn A. 2011. Controlling Polarization Dependent Reactions to Fabricate Multi-Component Functional Nanostructures. Advanced Functional Materials, Vol. 21, Issue. 24, p. 4712.


    Mokrý, Pavel Nováková, Kateřina Marvan, Milan and Fousek, Jan 2011. Dielectrophoretic forces generated by ferroelectric polydomain films. Phase Transitions, Vol. 84, Issue. 9-10, p. 810.


    Kokhanchik, L. S. Borodin, M. V. Shandarov, S. M. Burimov, N. I. Shcherbina, V. V. and Volk, T. R. 2010. Periodic domain structures formed under electron-beam irradiation in LiNbO3 plates and Ti:LiNbO3 planar waveguides of the Y cut. Physics of the Solid State, Vol. 52, Issue. 8, p. 1722.


    Kokhanchik, L. S. Borodin, M. V. Burimov, N. I. Shandarov, S. M. and Shcherbina, V. V. 2010. Planar Domain Gratings Fabricated by a Set of Local E-Beam Irradiations on the Y-Cuts of LiNbO3and in the Planar Waveguide Ti:LiNbO3. Ferroelectrics, Vol. 411, Issue. 1, p. 71.


    Mokrý, P. Marvan, M. and Fousek, J. 2010. Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films. Journal of Applied Physics, Vol. 107, Issue. 9, p. 094104.


    Bonnell, D.A. Kalinin, S.V. Kholkin, A.L. and Gruverman, A. 2009. Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale. MRS Bulletin, Vol. 34, Issue. 09, p. 648.


    Tiwari, Divya and Dunn, Steve 2009. Photochemistry on a polarisable semi-conductor: what do we understand today?. Journal of Materials Science, Vol. 44, Issue. 19, p. 5063.


    Bdikin, Igor K. Kholkin, Andrei L. Morozovska, Anna N. Svechnikov, Sergei V. Kim, Seung-Hyun and Kalinin, Sergei V. 2008. Domain dynamics in piezoresponse force spectroscopy: Quantitative deconvolution and hysteresis loop fine structure. Applied Physics Letters, Vol. 92, Issue. 18, p. 182909.


    Li, Dongbo and Bonnell, Dawn A. 2008. Ferroelectric lithography. Ceramics International, Vol. 34, Issue. 1, p. 157.


    Li, Dongbo and Bonnell, Dawn A. 2008. Controlled Patterning of Ferroelectric Domains: Fundamental Concepts and Applications. Annual Review of Materials Research, Vol. 38, Issue. 1, p. 351.


    ×

Polarization reorientation in ferroelectric lead zirconate titanate thin films with electron beams

  • D.B. Li (a1), D.R. Strachan (a2), J.H. Ferris (a1) and D.A. Bonnell (a1)
  • DOI: http://dx.doi.org/10.1557/jmr.2006.0107
  • Published online: 01 April 2006
Abstract

Ferroelectric domain patterning with an electron beam is demonstrated. Polarization of lead zirconate titanate thin films is shown to be reoriented in both positive and negative directions using piezoresponse force and scanning surface potential microscopy. Reorientation of the ferroelectric domains is a response to the electric field generated by an imbalance of electron emission and trapping at the surface. A threshold of 500 μC/cm2 and a saturation of 1500 μC/cm2 were identified. Regardless of beam energy, the polarization is reoriented negatively for beam currents less than 50 pA and positively for beam currents greater than 1 nA.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: bonnell@lrsm.upenn.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.J.F. Scott , C.A.P. De Araujo : Ferroelectric memories. Science 246, 1400 (1989).

3.S.V. Kalinin , D.A. Bonnell , T. Alvarez , X. Lei , Z. Hu , J.H. Ferris : Atomic polarization and local reactivity on ferroelectric surfaces: A new route toward complex nanostructures. Nano Lett. 2, 589 (2002).

4.S.V. Kalinin , D.A. Bonnell , T. Alvarez , X. Lei , Z. Hu , R. Shao , J.H. Derris : Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795 (2004).

5.M. Yamada , N. Nada , M. Saitoh , K. Watanabe : First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435 (1993).

6.C.H. Ahn , T. Tybell , L. Antognazza , K. Char , R.H. Hammond , M.R. Beasley , O. Fischer , J-M. Triscone : Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100 (1997).

7.T. Tybell , C.H. Ahn , J-M. Triscone : Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 72, 1454 (1998).

8.J.H. Ferris , D.B. Li , S.V. Kalinin , D.A. Bonnell : Nanoscale domain patterning of zirconate titanate materials using electon beams. Appl. Phys. Lett. 84, 774 (2004).

9.M. Yamada , K. Kishima : Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron-beam lithography at room temperature. Electron. Lett. 27, 828 (1991).

10.J. He , S.H. Tang , Y.Q. Qin , P. Dong , H.Z. Zhang , C.H. Kang , W.X. Sun , Z.X. Shen : Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron-beam lithography. J. Appl. Phys. 93, 9943 (2003).

14.S.V. Kalinin , D.A. Bonnell : Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002).

15.S. Fakhfakh , O. Jbara , M. Belhaj , Z. Fakhfakh , A. Kallel , E.I. Rau : Dynamic investigation of electron trapping and charge decay in electron-irradiated Al2O3 in a scanning electron microscope: Methodology and mechanisms. Nucl. Instrum. Meth. B, 197,114 (2002).

16.R. Renoud , F. Mady , J-P. Ganachaud : Monte Carlo simulation of the charge distribution induced by a high-energy electron beam in an insulating target. Phys. Condens. Matter 14, 231 (2002).

17.J. Cazaux : Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 59, 1418 (1986).

18.T. Thome , D. Braga , G. Blaise : Effect of current density on electron beam induced charging in sapphire and yttria-stabilized zirconia. J. Appl. Phys. 95, 2619 (2004).

19.R. Coelho , B. Aladeniz , B. Garros , D. Acroute , P. Mirebeau : Toward a quantitative analysis of the mirror method for characterizing insulation. IEEE Tran. Dielectr. Electr. Insul. 6, 202 (1999).

20.K. Kanaya , S. Okayama : Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5, 43 (1972).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: