Skip to main content
    • Aa
    • Aa

Pulsed laser deposition of KNbO3 thin films

  • M. J. Martín (a1), J. E. Alfonso (a1), J. Mendiola (a1), C. Zaldo (a1), D. S. Gill (a2), R. W. Eason (a2) and P. J. Chandler (a3)...

The laser ablation of stationary KNbO3 single crystal targets induces a Nb enrichment of the target surface. In rotated targets this effect is observed only in those areas irradiated with low laser fluence. The composition of the plasma formed close to the target surface is congruent with the target composition; however, at further distances K-deficient films are formed due to the preferential backscattering of K in the plasma. This loss may be compensated for by using K-rich ceramic targets. Best results so far have been obtained with [K]/[Nb] = 2.85 target composition, and crystalline KNbO3 films are formed when heating the substrates to 650 °C. Films formed on (100)MgO single crystals are usually single phase and oriented with the (110) film plane parallel to the (100) substrate surface. (100)NbO may coexist with KNbO3 on (100)MgO. At substrate temperatures higher than 650 °C, niobium diffuses into MgO forming Mg4Nb2O9 and NbO, leading to K evaporation from the film. Films formed on (001) α–Al2O3 (sapphire) show the coexistence of (111), (110), and (001) orientations of KNbO3, and the presence of NbO2 is also observed. KNbO3 films deposited on (001)LiNbO3 crystallize with the (111) plane of the film parallel to the substrate surface. For the latter two substrates the Nb diffusion into the substrate is lower than in MgO and consequently the K concentration retained in the film is comparatively larger.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. A. Manshingh , Ferroelectrics 102, 69 (1990).

3. P. Günter and J. P. Huignard , in Photorefractive Materials and Their Applications I, edited by P. Günter and J. P. Huignard (Springer-Verlag, Berlin, 1989), Chap. 2.

4. J. C. Baumert , P. Günter , and H. Melchior , Opt. Commun. 48, 215 (1983).

6. Y. Shibata , K. Kaya , K. Akashi , M. Kanai , T. Kawai , and S. Kawai , Jpn. J. Appl. Phys. 32, L745 (1993).

7. S. B. Ogale , R. Nawathey-Dikshit , and S. M. Kanetkar , J. Appl. Phys. 71, 5718 (1992).

8. C. Zaldo , D. S. Gill , R. W. Eason , J. Mendiola , and P. J. Chandler , Appl. Phys. Lett. 65, 502 (1994).

9. V. Gopalan and R. Raj , J. Am. Ceram. Soc. 78, 1825 (1995).

10. H. M. Christen , L. A. Boatner , J. D. Budai , M. F. Chisholm , L. A. Géa , P. J. Marrero , and D. P. Norton , Appl. Phys. Lett. 68, 1488 (1996).

11. C. N. Afonso , J. Gonzalo , F. Vega , E. Diéguez , J. C. Cheang Wong , C. Ortega , J. Siejka , and G. Amsel , Appl. Phys. Lett. 66, 1452 (1995).

16. A. Pialoux , M. L. Joyeux , and G. Cizeron , J. Less-Comm. Met. 87, 1 (1982).

18. R. Koch , J. Phys. Cond. Matt. 6, 9519 (1994).

20. J. W. Matthews , J. Vac. Sci. Technol. 12, 126 (1975).

21. Y. Y. Tomashpolsky and M. A. Sevostianov , Ferroelectrics 29, 87 (1980).

22. S. Z. Wang , G. C. Xiong , Y. M. He , B. Luo , W. Su , and S. D. Yao , Appl. Phys. Lett. 59, 1509 (1991).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 21 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd May 2017. This data will be updated every 24 hours.