Skip to main content
×
Home

Self-heating of silicon microwires: Crystallization and thermoelectric effects

  • Gokhan Bakan (a1), Niaz Khan (a1), Adam Cywar (a1), Kadir Cil (a1), Mustafa Akbulut (a1), Ali Gokirmak (a1) and Helena Silva (a1)...
Abstract
Abstract

We describe experiments on self-heating and melting of nanocrystalline silicon microwires using single high-amplitude microsecond voltage pulses, which result in growth of large single-crystal domains upon resolidification. Extremely high current densities (>20 MA/cm2) and consequent high temperatures (1700 K) and temperature gradients (1 K/nm) along the microwires give rise to strong thermoelectric effects. The thermoelectric effects are characterized through capture and analysis of light emission from the self-heated wires biased with lower magnitude direct current/alternating current voltages. The hottest spot on the wires consistently appears closer to the lower potential end for n-type microwires and to the higher potential end for p-type microwires. The experimental light emission profiles are used to verify the mathematical models and material parameters used for the simulations. Good agreement between experimental and simulated profiles indicates that these models can be used to predict and design optimum geometry and bias conditions for current-induced crystallization of microstructures.

Copyright
Corresponding author
a)Address all correspondence to these authors. e-mail: gokhan@engr.uconn.edu
b)e-mail: helena.silva@uconn.edu
References
Hide All
1.Wagner S., Gleskova H., Cheng I.C., and Wu M.: Silicon for thin-film transistors. Thin Solid Films 430, 15 (2003).
2.Reuss R.H., Chalama B.R., Moussessian A., Kane M.G., Kumar A., Zhang D.C., Rogers J.A., Hatalis M., Temple D., Moddel G., Eliasson B.J., Estes M.J., Kunze J., Handy E.S., Harmon E.S., Salzman D.B., Woodall J.M., Alam M.A., Murthy J.Y., Jacobsen S.C., Olivier M., Markus D., Campbell P.M., and Snow E.: Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239 (2005).
3.Makino T. and Nakamura H.: Electrical and optical properties of boron doped amorphous silicon films prepared by CVD. Jpn. J. Appl. Phys. 17, 1897 (1978).
4.Wagner R.S. and Ellis W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).
5.Kamins T.I.: Polycrystalline Silicon for Integrated Circuits and Displays (Kluwer Academics Publishers, Norwell, MA, 1998), p. 378.
6.Cui Y., Zhong Z., Wang D., Wang W.U., and Lieber C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3, 149 (2003).
7.Shi X., Henttinen K., Suni T., Suni I., Lau S.S., and Wong M.: Characterization of low-temperature processed single-crystalline silicon thin-film transistor on glass. IEEE Electron Device Lett. 24, 574 (2003).
8.Wu Y.C., Chang T.C., Liu P.T., Wu Y.C., Chou C.W., Tu C.H., Lou J.C., and Chang C.Y.: Mobility enhancement of polycrystalline-Si thin-film transistors using nanowire channels by pattern-dependent metal-induced lateral crystallization. Appl. Phys. Lett. 87, 143504 (2005).
9.Su C.J., Lin H.C., and Huang T.Y.: High-performance TFTs with Si nanowire channels enhanced by metal-induced lateral crystallization. Electron Device Lett. IEEE 27, 582 (2006).
10.Kim J.Y., Han J.W., Han J.M., Kim Y.H., Oh B.Y., Kim B.Y., Lee S.K., and Seo D.S.: Nickel oxide-induced crystallization of silicon for use in thin film transistors with a SiN diffusion filter. Appl. Phys. Lett. 92, 143501 (2008).
11.Sposili R.S. and Im J.S.: Sequential lateral solidification of thin silicon films on SiO. Appl. Phys. Lett. 69, 2864 (1996).
12.Im J.S., Sposili R.S., and Crowder M.A.: Single-crystal Si films for thin-film transistor devices. Appl. Phys. Lett. 70, 3434 (1997).
13.Sameshima T., Andoh N., and Takahashi H.: Rapid crystallization of silicon films using electrical-current-induced joule heating. J. Appl. Phys. 89, 5362 (2001).
14.Andoh N., Sameshima T., and Kitahara K.: Crystallization of silicon films by rapid joule heating method. Thin Solid Films 487, 118 (2005).
15.Bakan G., Cywar A., Silva H., and Gokirmak A.: Melting and crystallization of nanocrystalline silicon microwires through rapid self-heating. Appl. Phys. Lett. 94, 251910 (2009).
16.Glazov V.M., Chizhevskaya S.N., and Glagoleva N.N.: Liquid Semiconductors (Plenum Press, New York, 1969), p. 362.
17.Schnyders H.S. and Van Zytveld J.B.: Electrical resistivity and thermopower of liquid Ge and Si. J. Phys. Condens. Matter 8, 10875 (1996).
18.Sasaki H., Ikari A., Terashima K., and Kimura S.: Temperature dependence of the electrical resistivity of molten silicon. Jpn. J. Appl. Phys. 34, 3426 (1995).
19.Bakan G., Cil K., Cywar A., Silva H., and Gokirmak A.: Measurements of liquid silicon resistivity on silicon microwires, in Semiconductor Nanowires–Growth, Size-Dependent Properties and Applications, edited by P.C. McIntyre, J.M. Redwing, V. Schmidt, and S. Gradecak (Mater. Res. Soc. Symp. Proc. 1178E, Warrendale, PA, 2009), p. AA06-06.
20.Ayas S., Bakan G., Williams N.E., Gokirmak A., and Silva H.: Finite element simulation of filamentation in nanocrystalline silicon films under electrical stress. Presented at the 2010 MRS Fall Meeting, Boston, MA, 2010; (AA17, 64).
21.Williams N.E., Carpena E., Cil K., Silva H., and Gokirmak A.: Temperature dependent electrical characterization and crystallization of nanocrystalline silicon. Presented at the 2010 MRS Spring Meeting, San Francisco, CA, 2010: (A17.9).
22.Rowe D.M.: Thermoelectrics Handbook: Macro to Nano (CRC Press, Florida, 2006).
23.MacDonald D.K.C.: Thermoelectricity: An Introduction to the Principles (Dover Publications, Mineola, NY, 2006), p. 133.
24.Mastrangelo C.H., Yeh J.H.J., and Muller R.S.: Electrical and optical characteristics of vacuum-sealed polysiliconmicrolamps. IEEE Trans. Electron. Dev. 39, 1363 (1992).
25.Englander O., Christensen D., and Lin L.: Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl. Phys. Lett. 82, 4797 (2003).
26.Jungen A., Stampfer C., and Hierold C., Thermography on a suspended microbridge using confocal Raman scattering. Appl. Phys. Lett. 88, 191901, 05/08 (2006).
27.Schroder D.K.: Semiconductor Material and Device Characterization (Wiley-Interscience, New York, 2006).
28.Tio Castro D., Goux L., Hurkx G.A.M., Attenborough K., Delhougne R., Lisoni J., Jedema F.J., in’t Zandt M.A.A., Wolters R.A.M., Gravesteijn D.J., Verheijen M.A., Kaise M., Weemaes R.G.R., and Wouters D.J.: Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-change memory cells, in IEEE International Electron Devices Meeting, 2007, pp. 315318.
29.COMSOL-Multiphysics Modeling Library, http://www.comsol.com.
30.Lifshitz E.M., Landau L.D., and Pitaevskii L.P.: Electrodynamics of Continuous Media, 2nd ed. (Pergamon Press, MA, 1984), p. 455.
31.Geisberger A.A., Sarkar N., Ellis M., and Skidmore G.D.: Electrothermal properties and modeling of polysilicon microthermal actuators. J. Microelectromech. Syst. 12, 513 (2003).
32.Von Arx M., Paul O., and Baltes H.: Test structures to measure the Seebeck coefficient of CMOS IC polysilicon. IEEE Trans. Semicond. Manuf. 10, 201 (1997).
33.Fulkerson W., Moore J.P., Williams R.K., Graves R.S., and McElroy D.L.: Thermal conductivity, electrical resistivity, and seebeck coefficient of silicon from 100 to 1300° K. Phys. Rev. 167, 765 (1968).
34.Geballe T.H. and Hull G.W.: Seebeck effect in silicon. Phys. Rev. 98, 940 (1955).
35.Bux S.K., Blair R.G., Gogna P.K., Lee H., Chen G., Dresselhaus M.S., Kaner R.B., and Fleurial J.P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445 (2009).
36.Jones D.I., Le Comber P.G., and Spear W.E.: Thermoelectric power in phosphorus doped amorphous silicon. Philos. Mag. 36, 541 (1977).
37.Ong C., Sin E., and Tan H.: Heat-flow calculation of pulsed excimer ultraviolet laser’s melting of amorphous and crystalline silicon surfaces. J. Opt. Soc. Am. B 3, 812 (1986).
38.Sato T.: Spectral emissivity of silicon. Jpn. J. Appl. Phys. 6, 339 (1967).
39.Brandon D.G. and Kaplan W.D.: Microstructural Characterization of Materials, 2nd ed. (Wiley, New York, 1999), p. 536.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 215 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.