Skip to main content

The Snomipede: A parallel platform for scanning near-field photolithography

  • Ehtsham ul-Haq (a1), Zhuming Liu (a2), Yuan Zhang (a3), Shahrul A. Alang Ahmad (a4), Lu Shin Wong (a5), Jamie K. Hobbs (a6), Graham J. Leggett (a7), Jason Micklefield (a8), Clive J. Roberts (a9) and John M.R. Weaver (a10)...

Using scanning near-field lithography (SNP), it is possible to pattern molecules at surfaces with a resolution as good as 9 nm [M. Montague, R. E. Ducker, K. S. L. Chong, R. J. Manning, F. J. M. Rutten, M. C. Davies and G. J. Leggett, Langmuir 23 (13), 7328–7337 (2007)]. However, in common with other scanning probe techniques, SNP has previously been considered a serial process, hindering its use in many applications. IBM’s “Millipede” addresses this problem by utilizing an array of local probes operating in parallel. Here, we describe the construction of two instruments (Snomipedes) that integrate near-field optical methods into the parallel probe paradigm and promise the integration of top–down and bottom–up fabrication methods over macroscopic areas. Both are capable of performing near-field lithography with 16 probes in parallel spanning approximately 2 mm. The instruments can work in both ambient and liquid environments, key to many applications in nanobiology. In both, separate control of writing is possible for each probe. We demonstrate the deprotection of self-assembled monolayers of alkylsilanes with photocleavable protecting groups and subsequent growth of nanostructured polymer brushes from these nanopatterned surfaces by atom-transfer radical polymerization.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Steinmann P. and Weaver J.M.R.: Nanometer-scale gaps between metallic electrodes fabricated using a statistical alignment technique. Appl. Phys. Lett. 86, 063104 (2005).
2.Zharnikov M. and Grunze M.: Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects. J. Vac. Sci. Technol. B 20, 1793 (2002).
3.Golzhauser A., Eck W., Geyer W., Stadler V., and Grunze M.: Chemical nanolithography with electron beams. Adv. Mater. 13, 806 (2001).
4.Ballav N., Thomas H., Winkler T., Terfort A., and Zharnikov M.: Making Protein Patterns by Writing in a Protein-Repelling Matrix. Angew. Chem. Int. Ed. 48, 5833 (2009).
5.Sun S. and Leggett G.J.: Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Lett. 4, 1381 (2004).
6.Sun S.Q., Chong K.S.L., and Leggett G.J.: Nanoscale molecular patterns fabricated by using scanning near-field optical lithography. J. Am. Chem. Soc. 124, 2414 (2002).
7.Maoz R., Frydman E., Cohen S.R., and Sagiv J.: Constructive nanolithography: Site-defined silver self-assembly on nanoelectrochemically patterned monolayer templates. Adv. Mater. 12, 424 (2000).
8.Maoz R., Frydman E., Cohen S.R., and Sagiv J.: Constructive nanolithography: Inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures—A generic approach. Adv. Mater. 12, 725 (2000).
9.Maoz R., Cohen S.R., and Sagiv J.: Nanoelectrochemical patterning of monolayer surfaces: Toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55 (1999).
10.Liu M., Amro N.A., Chow C.S., and Liu G-Y.: Production of nanostructures on DNA surfaces. Nano Lett. 2, 863 (2002).
11.Liu G-Y. and Amro N.A.: Positioning protein molecules on surfaces: A nanoengineering approach to supramolecular chemistry. Proc. Natl. Acad. Sci. USA 99, 5165 (2002).
12.Amro N.A., Xu S., and Liu G-Y.: Patterning surfaces using tip-directed displacement and assembly. Langmuir 16, 3006 (2000).
13.Lim J-H., Ginger D.S., Lee K-B., Heo J., Nam J-M., and Mirkin C.A.: Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Ed. 42, 2309 (2003).
14.Lee K-B., Park S-J., Mirkin C.A., Smith J.C., and Mrksich M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702 (2002).
15.Hong S.H. and Mirkin C.A.: A nanoplotter with both parallel and serial writing capabilities. Science 288, 1808 (2000).
16.Hong S.H., Zhu J., and Mirkin C.A.: Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523 (1999).
17.Piner R.D., Zhu J., Xu F., Hong S., and Mirkin C.A.: Dip-pen nanolithography. Science 283, 661 (1999).
18.Manoharan H.C., Lutz C.P., and Eigler D.M.: Quantum mirages formed by coherent projection of electronic structure. Nature 403(6769), 512 (2000).
19.Zhou D., Bruckbauer A., Ying L.M., Abell C., and Klenerman D.: Building three-dimensional surface biological assemblies on the nanometer scale. Nano Lett. 3, 1517 (2003).
20.Mateiu R., Kuhle A., Marie R., and Boisen A.: Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope. Ultramicrosc. 105, 233 (2005).
21.Minne S.C., Flueckiger P., Soh H.T., and Quate C.F.: Atomic-force microscope lithography using amorphous-silicon as a resist and advances in parallel operation. J. Vac. Sci. Technol. B 13, 1380 (1995).
22.Staii C., Wood D.W., and Scoles G.: Ligand-induced structural changes in maltose binding proteins measured by atomic force microscopy. Nano Lett. 8, 2503 (2008).
23.Gu J.H., Yam C.M., Li S., and Cai C.Z.: Nanometric protein arrays on protein-resistant monolayers on silicon surfaces. J. Am. Chem. Soc. 126, 8098 (2004).
24.Fresco Z.M. and Frechet J.M.J.: Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles. J. Am. Chem. Soc. 127, 8302 (2005).
25.Moyer P.J., Walzer K., and Hietschold M.: Modification of the optical-properties of liquid-crystals using near-field Scanning optical microscopy. Appl. Phys. Lett. 67, 2129 (1995).
26.Sun S., Montague M., Critchley K., Chen M-S., Dressick W.J., Evans S.D., and Leggett G.J.: Fabrication of biological nanostructures by scanning near-field photolithography of chloromethylphenylsiloxane monolayers. Nano Lett. 6, 29 (2006).
27.Reynolds N.P., Tucker J.D., Davison P.A., Timney J.A., Hunter C.N., and Leggett G.J.: Site-specific immobilization and micrometer and nanometer scale photopatterning of yellow fluorescent protein on glass surfaces. J. Am. Chem. Soc. 131, 896 (2009).
28.Sun S. and Leggett G.J.: Micrometer and nanometer scale photopatterning of self-assembled monolayers of phosphonic acids on aluminum oxide. Nano Lett. 7, 3753 (2007).
29.Sun S., Mendes P., Critchley K., Diegoli S., Hanwell M., Evans S.D., Leggett G.J., Preece J.A., and Richardson T.H.: Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett. 6, 345
30.Montague M., Ducker R.E., Chong K.S.L., Manning R.J., Rutten F.J.M., Davies M.C., and Leggett G.J.: Fabrication of biomolecular nanostructures by scanning near-field photolithography of oligo(ethylene glycol)-terminated self-assembled monolayers. Langmuir 23, 7328 (2007).
31.Fodor S.P., Read J.L., Pirrung M.C., Stryer L., Lu A.T., and Solas D.: Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767 (1991).
32.Vettiger P., Despont M., Drechsler U., Durig U., Haberle W., Lutwyche M.I., Rothuizen H.E., Stutz R., Widmer R., and Binnig G.K.: The “Millipede”—More than one thousand tips for future AFM data storage. IBM J. Res. Develop. 44, 323 (2000).
33.Minne S.C., Yaralioglu G., Manalis S.R., Adams J.D., Zesch J., Atalar A., and Quate C.F.: Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett. 72, 2340 (1998).
34.Kingsley J.W., Ray S.K., Adawi A.M., Leggett G.J., and Lidzey D.G.: Optical nanolithography using a scanning near-field probe with an integrated light source. Appl. Phys. Lett. 93, 213103 (2008).
35.Zhang Y., Docherty K.E., and Weaver J.M.R.: Batch fabrication of cantilever array aperture probes for scanning near-field optical microscopy. Microelectron. Eng. 87, 1229 (2010).
36.Dufresne E.R. and Grier D.G.: Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrum. 69, 1974 (1998).
37.Curtis J.E., Koss B.A., and Grier D.G.: Dynamic holographic optical tweezers. Opt. Commun. 207, 169 (2002).
38.Ljungblad U., Martinsson H., and Sandstrom T.: Phase shifted addressing using a spatial light modulator. Microelectron. Eng. 7879, 398 (2005).
39.David C., Kaulich B., Medenwaldt R., Hettwer M., Fay N., Diehl M., Thieme J., and Schmahl G.: Low-distortion electron-beam lithography for fabrication of high-resolution germanium and tantalum zone plates. J. Vac. Sci. Technol. B 13, 2762 (1995).
40.Djomehri I.J., Savas T.A., and Smith H.I.: Zone-plate-array lithography in the deep ultraviolet. J. Vac. Sci. Technol. B 16, 3426 (1998).
41.Ducker R.E. and Leggett G.J.: A mild etch for the fabrication of three-dimensional nanostructures in gold. J. Am. Chem. Soc. 128, 392 (2006).
42.Brewer N.J., Janusz S.J., Critchley K., Evans S.D., and Leggett G.J.: Photo-oxidation of self-assembled monolayers by exposure to light of wavelength 254 nm: A static SIMS study. J. Phys. Chem. B 109, 11247 (2005).
43.Tizazu G., Adawi A., Leggett G.J., and Lidzey D.G.: Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium. Langmuir 25, 10746 (2009).
44.Iqbal P., Sun S., Hanwell M.D., Attwood D., Leggett G.J., Preece J.A., Richardson T.H., and Tunnicliffe D.: Photochemical fabrication of three-dimensional micro- and nano-structured surfaces from a C60 monoadduct. J. Mater. Chem. 18, 2016 (2008).
45.McGall G., Labadie J., Brock P., Wallraff G., Nguyen T., and Hinsberg W.: Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc. Natl. Acad. Sci. USA 93, 13555 (1996).
46.McGall G.H., Barone A.D., Diggelmann M., Fodor S.P.A., Gentalen E., and Ngo N.: The efficiency of light-directed synthesis of DNA arrays on glass substrates. J. Am. Chem. Soc. 119, 5081 (1997).
47.Sundberg S.A., Barrett R.W., Pirrung M., Lu A.L., Kiangsoontra B., and Holmes C.P.: Spatially-addressable immobilization of macromolecules on solid supports. J. Am. Chem. Soc. 117, 12050 (1995).
48.Pirrung M.C. and Huang C-Y.: A general method for the spatially defined immobilization of biomolecules on glass surfaces using “caged” biotin. Bioconjugate Chem. 7, 317 (1996).
49.Pirrung M.C., Dore T.M., Zhu Y., and Rana V.S.: Sensitized two-photon photochemical deprotection. Chem. Commun. 46, 5313 (2010).
50.Pirrung M.C., Wang L., and Montague-Smith M.P.: 3’-Nitrophenylpropyloxycarbonyl (NPPOC) protecting groups for high-fidelity automated 5’–3’ photochemical DNA synthesis. Org. Lett. 3, 1105 (2001).
51.Alang Ahmad S.A., Wong L.S., Ul-Haq E., Hobbs J.K., Leggett G.J., and Micklefield J.: Micrometer- and nanometer-scale photopatterning using 2-nitrophenylpropyloxycarbonyl-protected aminosiloxane monolayers. J. Am. Chem. Soc. 131, 1513 (2009).
52.Alang Ahmad S.A., Wong L.S., ul-Haq E., Hobbs J.K., Leggett G.J. and Micklefield J.: Protein micro- and nanopatterning using aminosilanes with protein-resistant photolabile protecting groups. J. Am. Chem. Soc. 133, 2749 (2011).
53.Overney R. and Meyer E.: Tribological investigations using friction force microscopy. MRS Bull. 18, 26 (1993).
54.Carpick R.W. and Salmeron M.: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163 (1997).
55.Kaholek M., Lee W-K., Feng J., LaMattina B., Dyer D.J., and Zauscher S.: Weak polyelectrolyte brush arrays fabricated by combining electron-beam lithography with surface-initiated photopolymerization. Chem. Mater. 18, 3660 (2006).
56.Riehn R., Charas A., Morgado J., and Cacialli F.: Near-field optical lithography of a conjugated polymer. Appl. Phys. Lett. 82, 526 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 157 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th January 2018. This data will be updated every 24 hours.