Skip to main content
×
×
Home

Solute stabilization of nanocrystalline tungsten against abnormal grain growth

  • Olivia K. Donaldson (a1), Khalid Hattar (a2), Tyler Kaub (a3), Gregory B. Thompson (a3) and Jason R. Trelewicz (a1)...
Abstract

Microstructure and phase evolution in magnetron sputtered nanocrystalline tungsten and tungsten alloy thin films are explored through in situ TEM annealing experiments at temperatures up to 1000 °C. Grain growth in unalloyed nanocrystalline tungsten transpires through a discontinuous process at temperatures up to 550 °C, which is coupled to an allotropic phase transformation of metastable β-tungsten with the A-15 cubic structure to stable body centered cubic (BCC) α-tungsten. Complete transformation to the BCC α-phase is accompanied by the convergence to a unimodal nanocrystalline structure at 650 °C, signaling a transition to continuous grain growth. Alloy films synthesized with compositions of W–20 at.% Ti and W–15 at.% Cr exhibit only the BCC α-phase in the as-deposited state, which indicate the addition of solute stabilizes the films against the formation of metastable β-tungsten. Thermal stability of the alloy films is significantly improved over their unalloyed counterpart up to 1000 °C, and grain coarsening occurs solely through a continuous growth process. The contrasting thermal stability between W–Ti and W–Cr is attributed to different grain boundary segregation states, thus demonstrating the critical role of grain boundary chemistry in the design of solute-stabilized nanocrystalline alloys.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Solute stabilization of nanocrystalline tungsten against abnormal grain growth
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Solute stabilization of nanocrystalline tungsten against abnormal grain growth
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Solute stabilization of nanocrystalline tungsten against abnormal grain growth
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail: jason.trelewicz@stonybrook.edu
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Beyerlein, I.J., Caro, A., Demkowicz, M.J., Mara, N.A., Misra, A., and Uberuaga, B.P.: Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).
2. Schuster, B.E., Ligda, J.P., Pan, Z.L., and Wei, Q.: Nanocrystalline refractory metals for extreme condition applications. JOM 63, 27 (2011).
3. Zinkle, S.J. and Snead, L.L.: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241 (2014).
4. Wurster, S., Baluc, N., Battabyal, M., Crosby, T., Du, J., García-Rosales, C., Hasegawa, A., Hoffmann, A., Kimura, A., Kurishita, H., Kurtz, R.J., Li, H., Noh, S., Reiser, J., Riesch, J., Rieth, M., Setyawan, W., Walter, M., You, J.H., and Pippan, R.: Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J. Nucl. Mater. 442, S181 (2013).
5. Hao, T., Fan, Z.Q., Zhang, T., Luo, G.N., Wang, X.P., Liu, C.S., and Fang, Q.F.: Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing. J. Nucl. Mater. 455, 595 (2014).
6. Wei, Q., Jiao, T., Ramesh, K.T., Ma, E., Kecskes, L.J., Magness, L., Dowding, R., Kazykhanov, V.U., and Valiev, R.Z.: Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression. Acta Mater. 54, 77 (2006).
7. Wurster, S. and Pippan, R.: Nanostructured metals under irradiation. Scr. Mater. 60, 1083 (2009).
8. El-Atwani, O., Hinks, J.A., Greaves, G., Gonderman, S., Qiu, T., Efe, M., and Allain, J.P.: In situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci. Rep. 4 (2014).
9. Suryanarayana, C. and Koch, C.C.: Nanocrystalline materials: Current research and future directions. Hyperfine Interact. 130, 5 (2000).
10. Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).
11. Weissmuller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).
12. Malow, T.R. and Koch, C.C.: Grain growth of nanocrystalline materials—A review. In Synthesis and Processing of Nanocrystalline Powder: Proceedings of a Symposium Cosponsored by the Materials Design and Manufacturing Division (MDMD), Bourrell, D.L., ed. (Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 1996), pp. 3344.
13. Ames, M., Markmann, J., Karos, R., Michels, A., Tschope, A., and Birringer, R.: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 4255 (2008).
14. Hibbard, G., McCrea, J.L., Palumbo, G., Aust, K.T., and Erb, U.: An initial analysis of mechanisms leading to late stage abnormal grain growth in nanocrystalline Ni. Scr. Mater. 47, 83 (2002).
15. Hibbard, G., Aust, K.T., Palumbo, G., and Erb, U.: Thermal stability of electrodeposited nanocrystalline cobalt. Scr. Mater. 44, 513 (2001).
16. Riotino, G., Antonione, C., Battezzati, L., and Marino, F.: Kinetics of abnormal grain growth in pure iron. J. Mater. Sci. 14, 86 (1979).
17. Simoes, S., Calinas, R., Vieira, M.T., Vieira, M.F., and Ferreira, P.J.: In situ TEM study of grain growth in nanocrystalline copper thin films. Nanotechnology 21 (2010).
18. Dannenberg, R., Stach, E.A., Groza, J.R., and Dresser, B.J.: In situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films. Thin Solid Films 370, 54 (2000).
19. Burke, J.E. and Turnbull, D.: Recrystallization and grain growth. Prog. Met. Phys. 3, 220 (1952).
20. Natter, H., Schmelzer, M., Loffler, M.S., Krill, C.E., Fitch, A., and Hempelmann, R.: Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction. J. Phys. Chem. B 104, 2467 (2000).
21. Brons, J.G. and Thompson, G.B.: A comparison of grain boundary evolution during grain growth in fcc metals. Acta Mater. 61, 3936 (2013).
22. Gertsman, V.Y. and Birringer, R.: On the room temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 30, 577 (1994).
23. Kacher, J., Robertson, I.M., Nowell, M., Knapp, J., and Hattar, K.: Study of rapid grain boundary migration in a nanocrystalline Ni thin film. Mater. Sci. Eng., A 528, 1628 (2011).
24. Paul, H. and Krill, C.E.: Anomalously linear grain growth in nanocrystalline Fe. Scr. Mater. 65, 5 (2011).
25. Dake, J.M. and Krill, C.E. III: Sudden loss of thermal stability in Fe-based nanocrystalline alloys. Scr. Mater. 66, 390 (2012).
26. Xiao, F., Cheng, W., and Jin, X.J.: Phase stability in pulse electrodeposited nanograined Co and Fe–Ni. Scr. Mater. 62, 496 (2010).
27. Hibbard, G.D., Aust, K.T., and Erb, U.: Thermal stability of electrodeposited nanocrystalline Ni–Co alloys. Mater. Sci. Eng., A 433, 195 (2006).
28. Klement, U. and Da Silva, M.: Thermal stability of electrodeposited nanocrystalline Ni- and Co-based materials. J. Iron Steel Res. Int. 14, 173 (2007).
29. Kim, S.G. and Park, Y.B.: Grain boundary segregation, solute drag and abnormal grain growth. Acta Mater. 56, 3739 (2008).
30. Koju, R.K., Darling, K.A., Kecskes, L.J., and Mishin, Y.: Zener pinning of grain boundaries and structural stability of immiscible alloys. JOM 68, 1596 (2016).
31. Thompson, C.V.: Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 24 (1990).
32. Holm, E.A., Miodownik, M.A., and Rollett, A.D.: On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater. 51, 2701 (2003).
33. Garcia, A.L., Tikare, V., and Holm, E.A.: Three-dimensional simulation of grain growth in a thermal gradient with non-uniform grain boundary mobility. Scr. Mater. 59, 661 (2008).
34. Abdeljawad, F., Medlin, D.L., Zimmerman, J.A., Hattar, K., and Foiles, S.M.: A diffuse interface model of grain boundary faceting. J. Appl. Phys. 119, 235306 (2016).
35. Lee, S.B., Hwang, N.M., Yoon, D.Y., and Henry, M.F.: Grain boundary faceting and abnormal grain growth in nickel. Metall. Mater. Trans. A 31, 985 (2000).
36. Frost, H.J., Thompson, C.V., and Walton, D.T.: Simulation of thin film grain structures—II. Abnormal grain growth. Acta Metall. Mater. 40, 779 (1992).
37. Darling, K.A., Roberts, A.J., Mishin, Y., Mathaudhu, S.N., and Kecskes, L.J.: Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J. Alloys Compd. 573, 142 (2013).
38. Abdeljawad, F., Lu, P., Argibay, N., Clark, B.G., Boyce, B.L., and Foiles, S.M.: Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater. 126, 528 (2017).
39. Trelewicz, J.R. and Schuh, C.A.: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79 (2009).
40. Liu, F. and Kirchheim, R.: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385 (2004).
41. Murdoch, H.A. and Schuh, C.A.: Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J. Mater. Res. 28, 2154 (2013).
42. Clark, B.G., Hattar, K., Marshall, M.T., Chookajorn, T., Boyce, B.L., and Schuh, C.A.: Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs. JOM 68, 1625 (2016).
43. Chookajorn, T. and Schuh, C.A.: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128 (2014).
44. Chookajorn, T., Park, M., and Schuh, C.A.: Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr. J. Mater. Res. 30, 151 (2015).
45. Polyakov, M.N., Chookajorn, T., Mecklenburg, M., Schuh, C.A., and Hodge, A.M.: Sputtered Hf–Ti nanostructures: A segregation and high-temperature stability study. Acta Mater. 108, 8 (2016).
46. Dey, S., Chang, C-H., Gong, M., Liu, F., and Castro, R.H.R.: Grain growth resistant nanocrystalline zirconia by targeting zero grain boundary energies. J. Mater. Res. 30, 2991 (2015).
47. Sasanuma, Y., Mamoru, U., Okada, K., Yamamoto, K., Kitano, Y., and Ishitani, A.: Characterization of long-periodic layered structures by X-ray diffraction IV: Small angle X-ray diffraction from a superlattice with non-ideal interfaces. Thin Solid Films 203, 113 (1991).
48. Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).
49. Edington, J.: Practical Electron Microscopy in Materials Science (Van Nostrand Reinhold Company, New York, New York, 1976).
50. Williams, G.P.: Electron binding energies. In X-ray Data Booklet 3rd ed., Thompson, A.C., ed. (Center for X-Ray Optics and Advance Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 2009).
51. Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).
52. Okeefe, M.J. and Grant, J.T.: Phase transformation of sputter deposited tungsten thin films with A-15 structure. J. Appl. Phys. 79, 9134 (1996).
53. Vullers, F.T.N. and Spolenak, R.: Alpha- vs. beta-W nanocrystalline thin films: A comprehensive study of sputter parameters and resulting materials’ properties. Thin Solid Films 577, 26 (2015).
54. Hibbard, G.D., Palumbo, G., Aust, K.T., and Erb, U.: Nanoscale combined reactions: Non-equilibrium alpha-Co formation in nanocrystalline epsilon-Co by abnormal grain growth. Philos. Mag. 86, 125 (2006).
55. Brewer, L.N., Follstaedt, D.M., Hattar, K., Knapp, J.A., Rodriguez, M.A., and Robertson, I.M.: Competitive abnormal grain growth between allotropic phases in nanocrystalline nickel. Adv. Mater. 22, 1161 (2010).
56. Choi, P., da Silva, M., Klement, U., Al-Kassab, T., and Kirchheim, R.: Thermal stability of electrodeposited nanocrystalline Co–1.1 at.% P. Acta Mater. 53, 4473 (2005).
57. Kacher, J., Hattar, K., and Robertson, I.M.: Initial texture effects on the thermal stability and grain growth behavior of nanocrystalline Ni thin films. Mater. Sci. Eng., A 675, 110 (2016).
58. Brons, J.G. and Thompson, G.B.: Orientation mapping via precession-enhanced electron diffraction and its applications in materials science. JOM 66, 165 (2014).
59. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333 (1957).
60. Sachenko, P., Schneibel, J.H., and Zhang, W.: Effect of faceting on the thermal grain-boundary grooving of tungsten. Philos. Mag. A 82, 815 (2002).
61. Holm, E.A., Hassold, G.N., and Miodownik, M.A.: On misorientation distribution evolution during anisotropic grain growth. Acta Mater. 49, 2981 (2001).
62. Olmsted, D.L., Foiles, S.M., and Holm, E.A.: Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 57, 3694 (2009).
63. Gruber, J., Miller, H.M., Hoffmann, T.D., Rohrer, G.S., and Rollett, A.D.: Misorientation texture development during grain growth. Part I: Simulation and experiment. Acta Mater. 57, 6102 (2009).
64. Dillon, S.J. and Rohrer, G.S.: Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater. 57, 1 (2009).
65. Brons, J.G. and Thompson, G.B.: Abnormalities associated with grain growth in solid solution Cu(Ni) thin films. Thin Solid Films 558, 170 (2014).
66. Zhou, X.Y., Yu, X.X., Kaub, T., Martens, R.L., and Thompson, G.B.: Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci. Rep. 6 (2016).
67. Xing, W., Kalidindi, A.R., and Schuh, C.A.: Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr. Mater. 127, 136 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 62
Total number of PDF views: 364 *
Loading metrics...

Abstract views

Total abstract views: 720 *
Loading metrics...

* Views captured on Cambridge Core between 5th September 2017 - 18th August 2018. This data will be updated every 24 hours.