Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T01:59:14.179Z Has data issue: false hasContentIssue false

Status of and prospects for organic electroluminescence

Published online by Cambridge University Press:  31 January 2011

Lewis J. Rothberg
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
Andrew J. Lovinger
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
Get access

Abstract

We review the device and materials science behind organic electroluminescent diodes made both using discrete evaporable molecules and spin-cast organic polymers. A great deal of progress has been made in improving the efficiencies and spectral properties of organic light-emitting diodes, and these are now adequate for many applications. More work is necessary to understand the stability and degradation of emissive and charge-transporting organics, but some systems have been shown to be stable for 104 hours at display brightness. Major challenges still face the community in terms of developing satisfactory systems design and processing techniques if organic electroluminescence is to realize either performance or economic advantages over technologies and significantly penetrate the display market. We present an analysis of the suitability of organic light-emitting diodes for various applications, and consider the materials and manufacturing obstacles that must be overcome.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Helfrich, W. and Schneider, W. G., Phys. Rev. Lett. 14, 229231 (1965).Google Scholar
2.Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913915 (1987).Google Scholar
3.Tang, C. W., VanSlyke, S. A., and Chen, C. H., J. Appl. Phys. 65, 36103615 (1989).Google Scholar
4.Burroughes, J.H., Bradley, D. D. C., Brown, A. R., Marks, R. N., MacKay, K., Friend, R. H., Burn, P. L., and Holmes, A. B., Nature (London) 347, 539541 (1990).Google Scholar
5.Bradley, D. D. C., Synth. Met. 54, 401415 (1993).Google Scholar
6.Burn, P. L., Bradley, D. D. C., Friend, R. H., Halliday, D. A., Holmes, A. B., Jackson, R. W., and Kraft, A., Perkin, J. C. S.Trans. 1, 32253231 (1992).Google Scholar
7.Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, 19821984 (1991).Google Scholar
8.Electronic Processes in Organic Crystals, edited by Pope, M. and Swenberg, C. E. (Oxford University Press, New York, 1982).Google Scholar
9.Allen, J.W., J. Lumin. 60, 912915 (1994).Google Scholar
10.Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., and Heeger, A. J., Nature (London) 357, 477479 (1992).Google Scholar
11.Tang, C. W., U.S. Patent No. 4 356 429.Google Scholar
12.Dodabalapur, A., Rothberg, L. J., and Miller, T. M., Electron. Lett. 30, 10001002 (1994).Google Scholar
13.Kido, J., Nagai, K., and Okamoto, Y., IEEE Trans. Electron Devices 40, 13421344 (1993).Google Scholar
14.Saito, S., Aminaka, E., Tsutsui, T., and Era, M., J. Lumin. 60, 902905 (1994).Google Scholar
15.Johnson, G.E., McGrane, K.M., and Stolka, M., Pure Appl. Chem. 67, 175182 (1995).Google Scholar
16.Kim, D. U., Tsutsui, T., and Saito, S., Chem. Lett. 7, 587588 (1995).Google Scholar
17.Onoda, M., J. Appl. Phys. 78, 13271333 (1995).Google Scholar
18.Gebler, D. D., Wang, Y. Z., Blatchford, J. W., Jessen, S. W., Lin, L-B., Gustafson, T. L., Wang, H. L., Swager, T. M., MacDiarmid, A. G., and Epstein, A. J., J. Appl. Phys. 78, 42644266 (1995).Google Scholar
19.Burrows, P. E., Sapochak, L. S., McCarty, D. M., Forrest, S. R., and Thompson, M. E., Appl. Phys. Lett. 64, 27182720 (1994).Google Scholar
20.Tsutsui, T., Takada, N., Saito, S., and Ogino, E., Appl. Phys. Lett. 65, 18681870 (1994).Google Scholar
21.Kido, J., Hayase, H., Hongawa, K., Nagai, K., and Okuyama, K., Appl. Phys. Lett. 65, 21242126 (1994).Google Scholar
22.Berggren, M., Gustafsson, G., Inganas, O., Andersson, M. R., Hjertberg, T., and Wennerstrom, O., J. Appl. Phys. 76, 75307534 (1994).Google Scholar
23.Kido, J., Hongawa, K., Okuyama, K., and Nagai, K., Appl. Phys. Lett. 64, 815817 (1994).Google Scholar
24.Johnson, G. E. and McGrane, K. M., Proc. SPIE Int. Soc. Opt. Eng. 1910, 714 (1993).Google Scholar
25.Adachi, C., Tsutsui, T., and Saito, S., Appl. Phys. Lett. 55, 14891491 (1989).Google Scholar
26.Hamada, Y., Adachi, C., Tsutsui, T., and Saito, S., Jpn. J. Appl. Phys. 31, 18121816 (1992).Google Scholar
27.Kido, J., Kohda, M., Hongawa, K., Okuyama, K., and Nagai, K., Mol. Cryst. Liq. Cryst. 227, 277283 (1993).Google Scholar
28.Sokolik, I., Yang, Z., Karasz, F.E., and Morton, D. C., J. Appl. Phys. 74, 35843586 (1993).Google Scholar
29.Hu, B., Karasz, F.E., Morton, D. C., Sokolik, I., and Yang, Z., J. Lumin. 60, 919 (1994).Google Scholar
30.Parker, I.D., Pei, Q., and Marrocco, M., Appl. Phys. Lett. 65, 12721274 (1994).Google Scholar
31.Zhang, C., von Seggern, H., Pakbaz, K., Kraebel, B., Schmidt, H-W., and Heeger, A. J., Synth. Met. 62, 3539 (1994).Google Scholar
32.Paar, C., Stampfl, J., Tasch, S., Kreimaier, H., Leising, G., Vestweber, H., Pommerehne, J., Bässler, H., and Scherf, U., Solid State Commun. 96, 167170 (1995).Google Scholar
33.Era, M., Morimoto, S., Tsutsui, T., and Saito, S., Appl. Phys. Lett. 65, 676678 (1994).Google Scholar
34.Fujita, S., Yoshie, T., Kohama, K., Kawakami, Y., and Fujita, S., Jpn. J. Appl. Phys. 32, 16911693 (1993).Google Scholar
35.Colvin, V., Schlamp, M., and Alivasatos, A. P., Nature (London) 370, 354356 (1994).Google Scholar
36.Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, 13161318 (1995).Google Scholar
37.Wu, A. P., Jikei, M., Kakimoto, M., Imai, Y., Ukishima, S., and Takahashi, Y., Chem. Lett. 12, 23192322 (1994).Google Scholar
38.Williams, G., Moore, A. J., Bryce, M. R., and Petty, M. C., Thin Solid Films 244, 936938 (1994).Google Scholar
39.Nakayama, T., Itoh, Y., and Kakuta, A., Appl. Phys. Lett. 63, 594595 (1993).Google Scholar
40.Tsutsui, T., Takada, N., and Saito, S., Synth. Met. 71, 20012004 (1995).Google Scholar
41.Hunt, N. E. J., Schubert, E. F., Logan, R. A., and Zydzik, G. J., Appl. Phys. Lett. 61, 22872289 (1992).Google Scholar
42.Dodabalapur, A., Rothberg, L. J., and Miller, T. M., Appl. Phys. Lett. 65, 23082310 (1994).Google Scholar
43.Kido, J., Kimura, M., and Nagai, K., Science 267, 13321334 (1995).Google Scholar
44.Jordon, R. H., Dodabalapur, A., Strukelj, M., and Miller, T. M., Appl. Phys. Lett. (in press).Google Scholar
45.Ohmori, Y., Fujii, A., Uchida, M., Morishima, C., and Yoshino, K., Appl. Phys. Lett. 63, 18711873 (1993).Google Scholar
46.Tsutsui, T., Lin, C. P., and Saito, S., Mol. Cryst. Liq. Cryst. 256, 6370 (1994).Google Scholar
47.Wang, H. L., Park, J. W., Fu, D. K., Marsella, M. J., Swager, T. M., MacDiarmid, A. G., Wang, Y. Z., Gebler, D. D., and Epstein, A. J., Abst. of Papers of Am. Chem. Soc. 210, 5 (1995).Google Scholar
48.Marks, R. N., Bradley, D. D. C., Jackson, R. W., Burn, P. L., and Holmes, A. B., Synth. Met. 57, 41284133 (1993).Google Scholar
49.Parker, I.D., J. Appl. Phys. 75, 16561666 (1994).Google Scholar
50.Vestweber, H., Pommerehne, J., Sander, R., Mahrt, R. F., Greiner, A., Heitz, W., and Bässler, H., Synth. Met. 68, 263268 (1995).Google Scholar
51.Kim, H. H., Miller, T. M., Westerwick, E. H., Kim, Y. O., Kwock, E. W., Morris, M. D., and Cerrulo, M., J. Lightwave Technol. 12, 21072113 (1994).Google Scholar
52.Physics of Semiconductor Devices, edited by Sze, S. M. (John Wiley, New York, 1981).Google Scholar
53.Lampert, M. A. and Mark, P., Current Injection in Solids (Academic Press, New York, 1970).Google Scholar
54.Burrows, P.E. and Forrest, S. R., Appl. Phys. Lett. 64, 22852287 (1994).Google Scholar
55.Strukelj, M., Papadimitrakopoulos, F., Miller, T. M., and Rothberg, L. J., Science 267, 19691972 (1995).Google Scholar
56.Karg, S., Ph.D. Thesis, Cuviller Verlag, Göttingen, 1995. ISBN 3–89588–153–8.Google Scholar
57.Thompson, M.E., McCarty, D.M., Sapochak, L., Burrows, P. E., and Forrest, S. R., 1995 Digest of LEOS Summer Topical Meetings, p. 9. ISBN 0–7803–2448-X.Google Scholar
58.Ettedgui, E., Razafitrimo, H., Park, K. T., Gao, Y., and Hsieh, B. R., J. Appl. Phys. 75, 75267530 (1994).Google Scholar
59.Salaneck, W. R. and Bredas, J. L., Synth. Met. 67, 1114 (1994).Google Scholar
60.Yang, Y., Westerweele, E., Zhang, C., Smith, P., and Heeger, A. J., J. Appl. Phys. 77, 694698 (1995).Google Scholar
61.Pei, Q., Yu, G., Zhang, C., Yang, Y., and Heeger, A. J., Science 269, 10861088 (1995).Google Scholar
62.Nowak, M. J., Spiegel, D., Hotta, S., Heeger, A. J., and Pincus, P.A., Macromol. 22, 29172926 (1989).Google Scholar
63.Ziemelis, K. E., Hussain, A. T., Bradley, D. D. C., Friend, R. H., Rühe, J., and Wegner, G., Phys. Rev. Lett. 66, 22312234 (1991).Google Scholar
64.Scher, H. and Montroll, E. W., Phys. Rev. B 12, 24552477 (1975).Google Scholar
65.Hosokawa, C., Tokailin, H., Higashi, H., and Kusumoto, T., Appl. Phys. Lett. 63, 13221324 (1993).Google Scholar
66.Karg, S., Dyakunov, V., Meier, M., Riess, W., and Paasch, G., Synth. Met. 67, 165168 (1994).Google Scholar
67.Kepler, R. G., Beeson, P. M., Jacobs, S. J., Anderson, R. A., Sinclair, M. B., Valencia, V. S., and Cahill, P. A., Appl. Phys. Lett. 66, 36183620 (1995).Google Scholar
68.VanSlyke, S.A. and Tang, C.W., 1995 Digest of LEOS Summer Topical Meetings, p. 3. ISBN 0–7803–2448-X.Google Scholar
69.Adachi, C., Nagai, K., and Tamoto, N., Appl. Phys. Lett. 66, 26792681 (1995).Google Scholar
70.Tsutsui, T., Aminaka, E. I., Fujita, Y., Hamada, Y., and Saito, S., Synth. Met. 57, 41574162 (1993).Google Scholar
71.Yang, Y. and Pei, Q., J. Appl. Phys. 77, 48074809 (1995).Google Scholar
72.Tokuhisa, H., Era, M., Tsutsui, T., and Saito, S., Appl. Phys. Lett. 66, 34333435 (1994).Google Scholar
73.Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., Nature (London) 365, 628630 (1993).Google Scholar
74.Brown, A. R., Bradley, D. D. C., Burroughes, J. H., Friend, R. H., Greenham, N. C., Burn, P. L., Holmes, A. B., and Kraft, A., Appl. Phys. Lett. 61, 27932795 (1992).Google Scholar
75.Brown, A. R., Pichler, K., Greenham, N. C., Bradley, D. D. C., and Friend, R. H., Chem. Phys. Lett. 210, 6165 (1993).Google Scholar
76.Yan, M., Rothberg, L. J., Papadimitrakopoulos, F., Galvin, M. E., and Miller, T. M., Phys. Rev. Lett. 72, 11041107 (1994).Google Scholar
77.Yan, M., Rothberg, L. J., Kwock, E. W., and Miller, T. M., Phys. Rev. Lett. 75, 19921995 (1995).Google Scholar
78.Rothberg, L. J., Yan, M., Son, S., Galvin, M. E., Kwock, E. W., Miller, T. M., Katz, H. E., Haddon, R. C., and Papadimi-trakopoulos, F., Synth. Met. (in press).Google Scholar
79.Hu, B., Yang, Z., and Karasz, F. E., J. Appl. Phys. 76, 24192422 (1994).Google Scholar
80.Osaheni, J.A. and Jenekhe, S. A., Macromol. 27, 739742 (1994).Google Scholar
81.Samuel, I.D. W., Rumbles, G., and Collison, C. J., Phys. Rev. B 52, R11 573–11 575 (1995).Google Scholar
82.Son, S., Dodabalapur, A., Lovinger, A. J., and Galvin, M. E., Science 269, 376379 (1995).Google Scholar
83.Kersting, R., Lemmer, U., Mahrt, R. F., Leo, K., Kurz, H., Bässler, H., and Göbel, E. O., Phys. Rev. Lett. 70, 38203823 (1993).Google Scholar
84.Yan, M., Rothberg, L. J., Papadimitrakopoulos, F., Galvin, M. E., and Miller, T. M., Phys. Rev. Lett. 73, 744746 (1994).Google Scholar
85.Greenham, N. C., Brown, A. R., Burroughes, J.H., Bradley, D. D. C., Friend, R. H., Burn, P. L., Kraft, A., and Holmes, A. B., Proc. SPIE Int. Soc. Opt. Eng. 1910, 111119 (1993).Google Scholar
86.Pichler, K., Halliday, D. A., Bradley, D. D. C., Burn, P. L., Friend, R. H., and Holmes, A. B.. J. Phys. Cond. Matter 5, 71557172 (1993).Google Scholar
87.Papadimitrakopoulos, F., Konstadinidis, K., Miller, T. M., Opila, R., Chandross, E. A., and Galvin, M. E., Chem. Mater. 6, 15631568 (1994).Google Scholar
88.Scurlock, R. D., Wang, B., Ogilby, P. R., Sheats, J.R., and Clough, R. L., J. Am. Chem. Soc. 117, 10194–10, 202 (1995).Google Scholar
89.Cumpston, B. H. and Jensen, K. F., Synth. Met. 73, 195199 (1995).Google Scholar
90.Scott, J.C., Kaufman, J.H., Brock, P. J., Pietro, R. D., Salem, J., and Goitia, J.A., J. Appl. Phys. 79, 2745 (1996).Google Scholar
91.Zhang, X-M., Higginson, K. A., and Papadimitrakopoulos, F., “Photoluminescence and Electroluminescence Quenching in 8-Hydroxyquinoline Aluminum Chelates,” Proc. Fall 1995 MRS Meeting (1996, in press).Google Scholar
92.Hamada, Y., Sano, T., Shibata, K., and Kuroki, K., Jpn. J. Appl. Phys. 2 34, L824826 (1995).Google Scholar
93.Do, L. M., Han, E. M., Niidome, Y., Fujihara, M., Kanno, T., Yoshida, S., Maeda, A., and Ikushima, A. J., J. Appl. Phys. 76, 51185121 (1994).Google Scholar
94.Burrows, P. E., Bulovic, V., Forrest, S. R., Sapochak, L. S., McCarty, D. M., and Thompson, M. E., Appl. Phys. Lett. 65, 29222924 (1994).Google Scholar
95.Tsutsui, T. and Saito, S., in Intrinsically Conducting Polymers: An Emerging Technology, NATO ASI series, series E, edited by Aldissi, M. (Kluwer Academic Press, The Netherlands, 1993), Vol. 246, pp. 123–134.Google Scholar
96. See, e.g., O'Meara, W. C., Information Display 11, 2628 (1995).Google Scholar
97.Colorimetry, 2nd ed., CIE Publication No. 15.2 (CIE, Vienna 1986).Google Scholar
98.Rothberg, L. J., Dodabalapur, A., and Miller, T. M., 1995 SID Digest of Technical Papers, pp. 717719.Google Scholar
99. Backlit or reflective passively addressed LC displays are also commonly used for this type of application.Google Scholar
100.Nuese, C. J., Tietjen, J. J., Gannon, J. J., and Gossenger, H. F., J. Electrochem. Soc. 116, 248 (1969).Google Scholar
101.Nakamura, S., 1995 SID Digest of Technical Papers, pp. 713716.Google Scholar
102.Mauch, R. H., Velthaus, K-O., Hüttl, B., Troppenz, U., and Herrmann, R., 1995 SID Digest of Technical Papers, pp. 720723.Google Scholar
103.Jordan, R. H., Rothberg, L. J., Dodabalapur, A., and Slusher, R. E., Appl. Phys. Lett. 69, 19971999 (1996).Google Scholar
104.Baigent, D. R., Marks, R. N., Greenham, N. C., Friend, R. H., Moratti, S.C., and Holmes, A. B., Appl. Phys. Lett. 65, 26362638 (1994).Google Scholar