Skip to main content
×
Home
    • Aa
    • Aa

Stimuli-responsive liquid crystal elastomers for dynamic cell culture

  • Aditya Agrawal (a1), Oluwatomiyin Adetiba (a2), Hojin Kim (a3), Huiying Chen (a4), Jeffrey G. Jacot (a5) and Rafael Verduzco (a6)...
Abstract
Abstract

Responsive, biocompatible substrates are of interest for directing the maturation and function of cells in vitro during cell culture. This can potentially provide cells and tissues with desirable properties for regenerative therapies. Here, we demonstrate a straightforward and scalable approach to attach, align, and dynamically load cardiomyocytes on responsive liquid crystal elastomer (LCE) substrates. Monodomain LCEs exhibit reversible shape changes in response to cyclic heating, and when immersed in an aqueous medium on top of resistive heaters, shape changes are fast, reversible, and produce minimal temperature changes in the surroundings. We systematically characterized the strain response of LCEs in water and demonstrated the attachment and alignment of neonatal rat ventricular myocytes on LCE substrates. Cardiomyocytes attached to both static and stimulated LCE substrates, and under cyclic stimulation, cardiomyocytes aligned along the primary direction of strain. This work demonstrates the potential of LCEs as stimuli-responsive substrates for dynamic cell culture.

Copyright
Corresponding author
a)Address all correspondence to these authors. e-mail: rafaelv@rice.edu
b)e-mail: jeff.jacot@rice.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Y. Li , G. Huang , X. Zhang , L. Wang , Y. Du , T.J. Lu , and F. Xu : Engineering cell alignment in vitro. Biotechnol. Adv. 32, 347 (2014).

P. Helm , M.F. Beg , M.I. Miller , and R.L. Winslow : Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. N. Y. Acad. Sci. 1047, 296 (2005).

M. Nikkhah , F. Edalat , S. Manoucheri , and A. Khademhosseini : Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33, 5230 (2012).

C. Neidlinger-Wilke , E.S. Grood , J.H-C. Wang , R.A. Brand , and L. Claes : Cell alignment is induced by cyclic changes in cell length: Studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19, 286 (2001).

F. Berthiaume , T.J. Maguire , and M.L. Yarmush : Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2, 403 (2011).

T. Eschenhagen and W.H. Zimmermann : Engineering myocardial tissue. Circ. Res. 97, 1220 (2005).

W-H. Zimmermann , K. Schneiderbanger , P. Schubert , M. Didié , F. Münzel , J.F. Heubach , S. Kostin , W.L. Neuhuber , and T. Eschenhagen : Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223 (2002).

L.D. Black , J.D. Meyers , J.S. Weinbaum , Y.A. Shvelidze , and R.T. Tranquillo : Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng., Part A 15, 3099 (2009).

S.M. Gopalan , C. Flaim , S.N. Bhatia , M. Hoshijima , R. Knoell , K.R. Chien , J.H. Omens , and A.D. McCulloch : Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol. Bioeng. 81, 578 (2003).

J. Garvin , J. Qi , M. Maloney , and A.J. Banes : Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 9, 967 (2003).

Y. Pang , X. Wang , D. Lee , and H.P. Greisler : Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force. Biomaterials 32, 3776 (2011).

J. Guan , F. Wang , Z. Li , J. Chen , X. Guo , J. Liao , and N.I. Moldovan : The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 32, 5568 (2011).

A. Furuta , S. Miyoshi , Y. Itabashi , T. Shimizu , S. Kira , K. Hayakawa , N. Nishiyama , K. Tanimoto , Y. Hagiwara , T. Satoh , K. Fukuda , T. Okano , and S. Ogawa : Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res. 98, 705 (2006).

Y. Sawa , S. Miyagawa , T. Sakaguchi , T. Fujita , A. Matsuyama , A. Saito , T. Shimizu , and T. Okano : Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: Report of a case. Surg. Today 42, 181 (2012).

K.A. Davis , K.A. Burke , P.T. Mather , and J.H. Henderson : Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32, 2285 (2011).

P. Yang , R.M. Baker , J.H. Henderson , and P.T. Mather : In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter 9, 4705 (2013).

M. Mayer , R. Rabindranath , J. Börner , E. Hörner , A. Bentz , J. Salgado , H. Han , H. Böse , J. Probst , M. Shamonin , G.J. Monkman , and G. Schlunck : Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata. PLoS One 8, e76196 (2013).

P.T. Mather , X. Luo , and I.A. Rousseau : Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445 (2009).

W. Small IV, P. Singhal , T.S. Wilson , and D.J. Maitland : Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 20, 3356 (2010).

D. Rickert , A. Lendlein , I. Peters , M.A. Moses , and R-P. Franke : Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: An overview. Eur. Arch. Oto-Rhino-Laryngol Head Neck 263, 215 (2006).

Q. Chen , S. Liang , and G.A. Thouas : Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38, 584 (2013).

J.F. Mano : Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater. 10, 515 (2008).

D. Ratna and J. Karger-Kocsis : Recent advances in shape memory polymers and composites: A review. J. Mater. Sci. 43, 254 (2008).

J. Biggs , K. Danielmeier , J. Hitzbleck , J. Krause , T. Kridl , S. Nowak , E. Orselli , X. Quan , D. Schapeler , W. Sutherland , and J. Wagner : Electroactive polymers: Developments of and perspectives for dielectric elastomers. Angew. Chem., Int. Ed. 52, 9409 (2013).

H. Jiang , C. Li , and X. Huang : Actuators based on liquid crystalline elastomer materials. Nanoscale 5, 5225 (2013).

C. Ohm , M. Brehmer , and R. Zentel : Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366 (2010).

S.A. Ali , H.A. Al-Muallem , S.U. Rahman , and M.T. Saeed : Bis-isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 50, 3070 (2008).

A. Agrawal , P. Luchette , P. Palffy-Muhoray , S.L. Biswal , W.G. Chapman , and R. Verduzco : Surface wrinkling in liquid crystal elastomers. Soft Matter 8, 7138 (2012).

J. Küpfer and H. Finkelmann : Nematic liquid single crystal elastomers. Macromol. Chem. Rapid Commun. 12, 717 (1991).

A. Agrawal , T. Yun , S.L. Pesek , W.G. Chapman , and R. Verduzco : Shape-responsive liquid crystal elastomer bilayers. Soft Matter 10, 1411 (2014).

T. Yamazaki , I. Komuro , S. Kudoh , Y. Zou , I. Shiojima , T. Mizuno , H. Takano , Y. Hiroi , K. Ueki , and K. Tobe : Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J. Clin. Invest. 96, 438 (1995).

H. Mansour , P.P. de Tombe , A.M. Samarel , and B. Russell : Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase C epsilon and focal adhesion kinase. Circ. Res. 94, 642 (2004).

J-G. Yu and B. Russell : Cardiomyocyte remodeling and sarcomere addition after uniaxial static strain in vitro. J. Histochem. Cytochem. 53, 839 (2005).

M. Chambers , H. Finkelmann , M. Remškar , A. Sánchez-Ferrer , B. Zalar , and S. Žumer : Liquid crystal elastomer–nanoparticle systems for actuation. J. Mater. Chem. 19, 1524 (2009).

M. Chambers , B. Zalar , M. Remskar , S. Zumer , and H. Finkelmann : Actuation of liquid crystal elastomers reprocessed with carbon nanoparticles. Appl. Phys. Lett. 89, 243116 (2006).

F. Greco , V. Domenici , A. Desii , E. Sinibaldi , B. Zupančič , B. Zalar , B. Mazzolai , and V. Mattoli : Liquid single crystal elastomer/conducting polymer bilayer composite actuator: Modelling and experiments. Soft Matter 9, 11405 (2013).

R.R. Kohlmeyer and J. Chen : Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem., Int. Ed. 52, 9234 (2013).

S.V. Ahir and E.M. Terentjev : Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491 (2005).

S.V. Ahir , A.M. Squires , A.R. Tajbakhsh , and E.M. Terentjev : Infrared actuation in aligned polymer-nanotube composites. Phys Rev. B 73, 085420 (2006).

J.E. Marshall and E.M. Terentjev : Photo-sensitivity of dye-doped liquid crystal elastomers. Soft Matter 9, 8547 (2013).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Agrawal et al. supplementary material
Supplementary figure

 Word (11.1 MB)
11.1 MB
VIDEO
Supplementary Materials

Agrawal supplementary movie
Supplementary movie 1

 Video (4.9 MB)
4.9 MB
VIDEO
Supplementary Materials

Agrawal et al. supplementary movie
Supplementary movie

 Video (19.5 MB)
19.5 MB

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 504 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th July 2017. This data will be updated every 24 hours.