Skip to main content

Stimuli-responsive liquid crystal elastomers for dynamic cell culture

  • Aditya Agrawal (a1), Oluwatomiyin Adetiba (a2), Hojin Kim (a3), Huiying Chen (a4), Jeffrey G. Jacot (a5) and Rafael Verduzco (a6)...

Responsive, biocompatible substrates are of interest for directing the maturation and function of cells in vitro during cell culture. This can potentially provide cells and tissues with desirable properties for regenerative therapies. Here, we demonstrate a straightforward and scalable approach to attach, align, and dynamically load cardiomyocytes on responsive liquid crystal elastomer (LCE) substrates. Monodomain LCEs exhibit reversible shape changes in response to cyclic heating, and when immersed in an aqueous medium on top of resistive heaters, shape changes are fast, reversible, and produce minimal temperature changes in the surroundings. We systematically characterized the strain response of LCEs in water and demonstrated the attachment and alignment of neonatal rat ventricular myocytes on LCE substrates. Cardiomyocytes attached to both static and stimulated LCE substrates, and under cyclic stimulation, cardiomyocytes aligned along the primary direction of strain. This work demonstrates the potential of LCEs as stimuli-responsive substrates for dynamic cell culture.

Corresponding author
a)Address all correspondence to these authors. e-mail:
Hide All
1.Li Y., Huang G., Zhang X., Wang L., Du Y., Lu T.J., and Xu F.: Engineering cell alignment in vitro. Biotechnol. Adv. 32, 347 (2014).
2.Helm P., Beg M.F., Miller M.I., and Winslow R.L.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. N. Y. Acad. Sci. 1047, 296 (2005).
3.Nikkhah M., Edalat F., Manoucheri S., and Khademhosseini A.: Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33, 5230 (2012).
4.Neidlinger-Wilke C., Grood E.S., Wang J.H-C., Brand R.A., and Claes L.: Cell alignment is induced by cyclic changes in cell length: Studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19, 286 (2001).
5.Berthiaume F., Maguire T.J., and Yarmush M.L.: Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2, 403 (2011).
6.Eschenhagen T. and Zimmermann W.H.: Engineering myocardial tissue. Circ. Res. 97, 1220 (2005).
7.Zimmermann W-H., Schneiderbanger K., Schubert P., Didié M., Münzel F., Heubach J.F., Kostin S., Neuhuber W.L., and Eschenhagen T.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223 (2002).
8.Black L.D., Meyers J.D., Weinbaum J.S., Shvelidze Y.A., and Tranquillo R.T.: Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng., Part A 15, 3099 (2009).
9.Lee A.A., Delhaas T., Waldman L.K., MacKenna D.A., Villarreal F.J., and McCulloch A.D.: An equibiaxial strain system for cultured cells. Am. J. Physiol.: Cell Physiol. 271, C1400 (1996).
10.Gopalan S.M., Flaim C., Bhatia S.N., Hoshijima M., Knoell R., Chien K.R., Omens J.H., and McCulloch A.D.: Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol. Bioeng. 81, 578 (2003).
11.Garvin J., Qi J., Maloney M., and Banes A.J.: Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 9, 967 (2003).
12.Pang Y., Wang X., Lee D., and Greisler H.P.: Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force. Biomaterials 32, 3776 (2011).
13.Guan J., Wang F., Li Z., Chen J., Guo X., Liao J., and Moldovan N.I.: The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 32, 5568 (2011).
14.Emmert M.Y., Hitchcock R.W., and Hoerstrup S.P.: Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv. Drug Delivery Rev. 6970, 254 (2014).
15.Furuta A., Miyoshi S., Itabashi Y., Shimizu T., Kira S., Hayakawa K., Nishiyama N., Tanimoto K., Hagiwara Y., Satoh T., Fukuda K., Okano T., and Ogawa S.: Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res. 98, 705 (2006).
16.Sawa Y., Miyagawa S., Sakaguchi T., Fujita T., Matsuyama A., Saito A., Shimizu T., and Okano T.: Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: Report of a case. Surg. Today 42, 181 (2012).
17.Davis K.A., Burke K.A., Mather P.T., and Henderson J.H.: Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32, 2285 (2011).
18.Yang P., Baker R.M., Henderson J.H., and Mather P.T.: In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter 9, 4705 (2013).
19.Mayer M., Rabindranath R., Börner J., Hörner E., Bentz A., Salgado J., Han H., Böse H., Probst J., Shamonin M., Monkman G.J., and Schlunck G.: Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata. PLoS One 8, e76196 (2013).
20.Mather P.T., Luo X., and Rousseau I.A.: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445 (2009).
21.Small W. IV, Singhal P., Wilson T.S., and Maitland D.J.: Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 20, 3356 (2010).
22.Rickert D., Lendlein A., Peters I., Moses M.A., and Franke R-P.: Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: An overview. Eur. Arch. Oto-Rhino-Laryngol Head Neck 263, 215 (2006).
23.Chen Q., Liang S., and Thouas G.A.: Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38, 584 (2013).
24.Mano J.F.: Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater. 10, 515 (2008).
25.Ratna D. and Karger-Kocsis J.: Recent advances in shape memory polymers and composites: A review. J. Mater. Sci. 43, 254 (2008).
26.Biggs J., Danielmeier K., Hitzbleck J., Krause J., Kridl T., Nowak S., Orselli E., Quan X., Schapeler D., Sutherland W., and Wagner J.: Electroactive polymers: Developments of and perspectives for dielectric elastomers. Angew. Chem., Int. Ed. 52, 9409 (2013).
27.Warner M. and Terentjev E.M.: Liquid Crystal Elastomers (Oxford University Press, Oxford, England, 2003).
28.Jiang H., Li C., and Huang X.: Actuators based on liquid crystalline elastomer materials. Nanoscale 5, 5225 (2013).
29.Ohm C., Brehmer M., and Zentel R.: Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366 (2010).
30.Ali S.A., Al-Muallem H.A., Rahman S.U., and Saeed M.T.: Bis-isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 50, 3070 (2008).
31.Agrawal A., Luchette P., Palffy-Muhoray P., Biswal S.L., Chapman W.G., and Verduzco R.: Surface wrinkling in liquid crystal elastomers. Soft Matter 8, 7138 (2012).
32.Küpfer J. and Finkelmann H.: Nematic liquid single crystal elastomers. Macromol. Chem. Rapid Commun. 12, 717 (1991).
33.Mark J.E.: Polymer Data Handbook (Oxford University Press, New York, USA, 1999).
34.Agrawal A., Yun T., Pesek S.L., Chapman W.G., and Verduzco R.: Shape-responsive liquid crystal elastomer bilayers. Soft Matter 10, 1411 (2014).
35.Komuro I., Kaida T., Shibazaki Y., Kurabayashi M., Katoh Y., Hoh E., Takaku F., and Yazaki Y.: Stretching cardiac myocytes stimulates protooncogene expression. J. Biol. Chem. 265, 3595 (1990).
36.Yamazaki T., Komuro I., Kudoh S., Zou Y., Shiojima I., Mizuno T., Takano H., Hiroi Y., Ueki K., and Tobe K.: Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J. Clin. Invest. 96, 438 (1995).
37.Fink C., Ergün S., Kralisch D., Remmers U., Weil J., and Eschenhagen T.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14, 669 (2000).
38.Mansour H., de Tombe P.P., Samarel A.M., and Russell B.: Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase C epsilon and focal adhesion kinase. Circ. Res. 94, 642 (2004).
39.Yu J-G. and Russell B.: Cardiomyocyte remodeling and sarcomere addition after uniaxial static strain in vitro. J. Histochem. Cytochem. 53, 839 (2005).
40.Chambers M., Finkelmann H., Remškar M., Sánchez-Ferrer A., Zalar B., and Žumer S.: Liquid crystal elastomer–nanoparticle systems for actuation. J. Mater. Chem. 19, 1524 (2009).
41.Chambers M., Zalar B., Remskar M., Zumer S., and Finkelmann H.: Actuation of liquid crystal elastomers reprocessed with carbon nanoparticles. Appl. Phys. Lett. 89, 243116 (2006).
42.Greco F., Domenici V., Desii A., Sinibaldi E., Zupančič B., Zalar B., Mazzolai B., and Mattoli V.: Liquid single crystal elastomer/conducting polymer bilayer composite actuator: Modelling and experiments. Soft Matter 9, 11405 (2013).
43.Kohlmeyer R.R. and Chen J.: Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem., Int. Ed. 52, 9234 (2013).
44.Ahir S.V. and Terentjev E.M.: Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 4, 491 (2005).
45.Ahir S.V., Squires A.M., Tajbakhsh A.R., and Terentjev E.M.: Infrared actuation in aligned polymer-nanotube composites. Phys Rev. B 73, 085420 (2006).
46.Marshall J.E. and Terentjev E.M.: Photo-sensitivity of dye-doped liquid crystal elastomers. Soft Matter 9, 8547 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Agrawal et al. supplementary movie
Supplementary movie

 Video (10.9 MB)
10.9 MB
Supplementary materials

Agrawal supplementary movie
Supplementary movie 1

 Video (2.2 MB)
2.2 MB
Supplementary materials

Agrawal et al. supplementary material
Supplementary figure

 Word (11.1 MB)
11.1 MB


Full text views

Total number of HTML views: 19
Total number of PDF views: 153 *
Loading metrics...

Abstract views

Total abstract views: 837 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.