Skip to main content
×
×
Home

Strain landscapes and self-organization of free surfaces in complex oxide epitaxy

  • Felip Sandiumenge (a1)
Abstract

The growth behavior of epitaxial transition metal oxides with the perovskite structure often shows discrepancies with models established for semiconductor and metal films. The reason is rooted in the versatility of such octahedral framework structures to accommodate the interfacial dissimilarity and the participation of strongly coupled electron and lattice degrees of freedom in strain relaxation mechanisms. Here, we revisit the behavior of the prototypic La0.7Sr0.3MnO3 manganite under specific growth conditions, enabling the isolation of pure octahedral tilting and misfit dislocation mechanisms in the same material. Analysis of the observed behavior provides insights into the competition between octahedral tilting and classical relaxation mechanisms by misfit dislocations or domain formation, and the effect of additional contributions to dissimilarity such as symmetry mismatch and polar discontinuities. Moreover, given the intimate association between misfit relaxation and self-organization mechanisms, opportunities and limitations of the observed behavior in the generation of novel bottom-up functional nanostructures is also addressed.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: felip@icmab.cat
Footnotes
Hide All

Contributing Editor: Artur Braun

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
References
Hide All
1. Frank, F.C. and van der Merwe, J.H.: One-dimensional dislocations. I. Static theory. Proc. R. Soc. London, Ser. A 198, 205216 (1949).
2. Frank, F.C. and van der Merwe, J.H.: One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth. Proc. R. Soc. London, Ser. A 198, 216225 (1949).
3. Matthews, J.W.: The observation of dislocations to accommodate the misfit between crystals with different lattice parameters. Philos. Mag. 6, 13471349 (1961).
4. Delavignette, P., Tournier, J., and Amelinckx, S.: Direct observation of dislocations due to epitaxy. Philos. Mag. 6, 14191420 (1961).
5. Hirsch, P.B., Horne, R.W., and Wheelan, M.J.: Direct observation of the arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677684 (1956).
6. Matthews, J.W.: Defects associated with the accommodation of misfit between crystals. J. Vac. Sci. Technol. 12, 126133 (1975).
7. van der Merwe, J.H.: Strain relaxation in epitaxial overlayers. J. Electron. Mater. 20, 793803 (1991).
8. Jain, S.C., Harker, A.H., and Cowley, R.A.: Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems. Philos. Mag. A 75, 14611515 (1997).
9. Dove, M.T., Gambhir, M., Hammonds, K.T., Heine, V., and Pryde, A.K.A.: Distortions of framework structures. Phase Transitions 58, 121143 (1996).
10. Carpenter, M.A., Sondergeld, P., Li, B., Liebermann, R.C., Walsh, J.W., Schreuer, J., and Darling, T.W.: Structural evolution, strain and elasticity of perovskites at high pressures and temperatures. J. Mineral. Petrol. Sci. 101, 95109 (2006).
11. Pennycook, S.J., Zhou, H., Chisholm, M.F., Borisevich, A.Y., Varela, M., Gazquez, J., Pennycook, T.J., and Narayan, J.: Misfit accommodation in oxide film heterostructures. Acta Mater. 61, 27252733 (2013).
12. Sandiumenge, F., Santiso, J., Balcells, L., Konstantinovic, Z., Roqueta, J., Pomar, A., Espinós, J.P., and Martínez, B.: Competing misfit relaxation mechanisms in epitaxial correlated oxides. Phys. Rev. Lett. 110, 107206 (2013).
13. Vailionis, A., Boschker, H., Siemons, W., Houwman, E.P., Blank, D.H.A., Rijnders, G., and Koster, G.: Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations. Phys. Rev. B 83, 064101 (2011).
14. Zhang, Y.Y., Mishra, R., Pennycook, T.J., Borisevich, A.Y., Pennycook, S.J., and Pantelides, S.: Oxygen disorder, a way to accommodate large epitaxial strains in oxides. Adv. Mater. Interfaces 2, 1500344 (2015).
15. Gao, H-J., Chen, C.L., Rafferty, B., Pennycook, S.J., Luo, G.P., and Chu, C.W.: Atomic structure of Ba0.5Sr0.5TiO3 thin films on LaAlO3 . Appl. Phys. Lett. 75, 25422544 (1999).
16. Suzuki, T., Nishi, Y., and Fujimoto, M.: Analysis of misfit relaxation in heteroepitaxial BaTiO3 thin films. Philos. Mag. A 79, 24612483 (1999).
17. Wang, Y., Kim, S.G., and Chen, I-W.: Control of strain relaxation in tensile and compressive oxide thin films. Acta Mater. 56, 53125321 (2008).
18. Tokura, Y.: Correlated-electron physics in transition-metal oxides. Phys. Today 56, 5055 (2003).
19. Tebano, A., Aruta, C., Sanna, S., Medaglia, P.G., Balestrino, G., Sidorenko, A.A., De Renzi, R., Ghiringhelli, G., Braicovich, L., Bisogni, V., and Brookes, N.B.: Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100, 137401 (2008).
20. Pesquera, D., Herranz, G., Barla, A., Pellegrin, E., Bondino, F., Magnano, E., Sánchez, F., and Fontcuberta, J.: Surface symmetry-breaking and strain effects on orbital-occupancy in transition metal perovskite films. Nat. Commun. 3, 1189 (2012).
21. Fang, Z., Solovyev, I., and Terakura, K.: Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84, 31693172 (2000).
22. Mukherjee, A., Cole, W.S., Woodward, P., Randeria, M., and Trivedi, N.: Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films. Phys. Rev. Lett. 110, 157201 (2013).
23. Müller, K.A., Berlinger, W., and Waldner, F.: Characteristic structural phase transition in perovskite-type compounds. Phys. Rev. Lett. 21, 814817 (1968).
24. He, F., Wells, B.O., and Saphiro, M.: Strain phase diagram and domain orientation in SrTiO3 thin films. Phys. Rev. Lett. 94, 176101 (2005).
25. May, S.J., Kim, J-W., Rondinelli, J.M., Karapetrova, E., Spalding, N.A., Bhattacharya, A., and Ryan, P.J.: Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 0141110 (2010).
26. Weber, M.C., Guennou, M., Dix, N., Pesquera, D., Sánchez, F., Herranz, G., Fontcuberta, J., López-Conesa, L., Estradé, S., Peiró, F., Iñiguez, J., and Kreisel, J.: Multiple strain-induced transitions in LiNiO3 thin films. Phys. Rev. B 94, 014118 (2016).
27. Hwang, J., Son, J., Zhang, J.Y., Janotti, A., Van de Walle, C.G., and Stemmer, S.: Structural origins of the propierties of rare earth nickelate superlattices. Phys. Rev. B 87, 060101(R) (2013).
28. Rotella, H., Lüders, U., Janolin, P-E., Dao, V.H., Chategnier, D., Feyerherm, R., Dudzik, E., and Prellier, W.: Octahedral tilting in LaVO3 thin films. Phys. Rev. B 85, 184101 (2012).
29. Zayak, A.T., Huang, X., Neaton, J.B., and Rabe, K.M.: Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain. Phys. Rev. B 74, 094104 (2006).
30. Aso, R., Kan, D., Shimakawa, Y., and Kurata, H.: Control of structural distortions in transition-metal oxide films through oxygen displacement at the heterointerface. Adv. Funct. Mater. 24, 51775184 (2014).
31. Sando, D., Xu, B., Bellaiche, L., and Nagarajan, V.: A multiferroic on the brink: Uncovering nuances of strain-induced transitions in BiFeO3 . Appl. Phys. Rev. 3, 011106 (2016).
32. Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 33843392 (1972).
33. Glazer, A.M.: A brief history of tilts. Phase Transitions 84, 405420 (2011).
34. Howard, C.J. and Stokes, H.T.: Group-Theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 54, 782789 (1998).
35. Alderson, A. and Evans, K.E.: Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89, 225503 (2002).
36. Valant, M., Axelsson, A-K., Aguesse, F., and Alford, N.M.: Molecular auxetic behavior of epitaxial Co-ferrite spinel thin film. Adv. Funct. Mater. 20, 644647 (2010).
37. MacManus-Driscoll, J., Suwardi, A., Kursumovic, A., Bi, Z., Tsai, C-F., Wang, H., Jia, Q., and Lee, O.J.: New strain states and radical property tuning of metal oxides using a nanocomposite thin film approach. APL Mater. 3, 062507 (2015).
38. Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423426 (2004).
39. Gozar, A., Logvenov, G., Fitting Kourkoutis, L., Bollinger, A.T., Giannuzzi, L.A., Muller, D.A., and Bozovic, I.: High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782785 (2008).
40. Reyren, N., Thiel, S., Caviglia, A.D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J-M., and Mannhart, J.: Superconducting interfaces between insulating oxides. Science 317, 11961199 (2007).
41. Garcia, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., and Barthélémy, A.: Ferroelectric control of spin polarization. Science 327, 11061110 (2010).
42. Wang, X.R., Li, C.J., , W.M., Paudel, T.R., Leusink, D.P., Koek, M., Poccia, N., Vailionis, A., Venkatesan, T., Coey, J.M.D., Tsymbal, Ariando, E.Y., and Hilgenkamp, H.: Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heteroestructures. Science 349, 716719 (2015).
43. Rondinelli, J.M. and Spaldin, N.A.: Structure and properties of functional oxide thin films: Insights from electronic-structure calculations. Adv. Mater. 23, 33633381 (2011).
44. Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261270 (2012).
45. Kan, D., Aso, R., Sato, R., Haruta, M., Kurata, H., and Shimakawa, Y.: Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 15, 432438 (2016).
46. Qiao, L., Jang, J.H., Singh, D.J., Gai, Z., Xiao, H., Mehta, A., Vasudevan, R.K., Tselev, A., Feng, Z., Zhou, H., Li, S., Prellier, W., Zu, X., Liu, Z., Borisevich, A., Baddorf, A.P., and Biegalski, M.D.: Dimensionality controlled octahedral symmetry-mismatch and functionalities in epitaxial LaCoO3/SrTiO3 heterostructures. Nano Lett. 15, 46774684 (2015).
47. Moon, E.J., Balachandran, P.V., Kirby, B.J., Keavney, D.J., Sichel-Tissot, R.J., Schlepütz, C.M., Karapetrova, E., Xeng, X.M., Rondinelli, J.M., and May, S.J.: Effect of interfacial octahedral behavior in ultrathin manganite films. Nano Lett. 14, 25092514 (2014).
48. Gao, R., Dong, Y., Xu, H., Zhou, H., Yuan, Y., Gopalan, V., Gao, C., Fong, D.D., Chen, Z., Luo, Z., and Martin, L.W.: Interfacial octahedral rotation mismatch control of the symmetry and properties of SrRuO3 . ACS Appl. Mater. Interfaces 8, 1487114878 (2016).
49. Jia, C.L., Mi, S.B., Faley, M., Poppe, U., Schubert, J., and Urban, K.: Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009).
50. Borisevich, A.Y., Chang, H.J., Huijben, M., Oxley, M.P., Okamoto, S., Niranjan, M.K., Burton, J.D., Tsymbal, E.Y., Chu, Y.H., Yu, P., Ramesh, R., Kalinin, S.V., and Pennycook, S.J.: Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).
51. Aso, R., Kan, D., Shimakawa, Y., and Kurata, H.: Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).
52. Fister, T.T., Zhou, H., Luo, Z., Seo, S.S.A., Hruszkewycz, S.O., Proffit, D.L., Eastman, J.A., Fuoss, P.H., Baldo, P.M., Lee, H.N., and Fong, D.D.: Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures. APL Mater. 2, 021102 (2014).
53. He, Q., Ishikawa, R., Lupini, A.R., Qiao, L., Moon, E.J., Ovchinnikov, O., May, S.J., Biegalski, M.D., and Borisevich, A.: Octahedron rotations at perovskite heterointerfaces, unit cell by unit cell. ACS Nano 9, 84128419 (2015).
54. Aso, R., Kan, D., Shimakawa, Y., and Kurata, H.: Octahedral tilt propagation controlled by A-site cation size at perovskite oxide heterointerfaces. Cryst. Growth Des. 14, 21282132 (2014).
55. Darling, T.W., Migliori, A., Moshopoulou, E.G., Trugman, S.A., Neumeier, J.J., Sarrao, J.L., Bishop, A.R., and Thompson, J.D.: Measurement of the elastic tensor of a single crystal of La0.87Sr0.13MnO3 and its response to magnetic fields. Phys. Rev. B 57, 50935097 (1998).
56. Goodwin, A.L.: Rigid unit modes and intrinsic flexibility in linearly bridged framework structures. Phys. Rev. B 74, 13402 (2006).
57. Woodward, P.M.: Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr., Sect. B: Struct. Sci. 53, 4466 (1997).
58. Roytburd, L.: Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329339 (1976).
59. Farag, N., Bobeth, M., Pompe, W., Romanov, A.E., and Speck, J.S.: Modeling of twinning in (001)-oriented La0.67Sr0.33MnO3 thin films. J. Appl. Phys. 97, 113516 (2005).
60. Sapriel, J.: Domain-wall orientations in ferroelastics. Phys. Rev. 12, 51285140 (1975).
61. Haas, C.W. and Jaep, W.F.: Domain wall model for ferroelastics. Phys. Lett. A 49, 7778 (1974).
62. Beanland, R.: Structure of planar defects in tilted perovskites. Acta Crystallogr., Sect. A: Found. Crystallogr. 67, 191199 (2011).
63. Catalan, G., Seidel, J., Ramesh, R., and Scott, J.F.: Domain wall nanoelectrics. Rev. Mod. Phys. 84, 119155 (2012).
64. Szot, K., Speier, W., Bihlmayer, G., and Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nat. Mater. 5, 312320 (2006).
65. Marrocchelli, D., Sun, L., and Yildiz, B.: Dislocations in SrTiO3: Easy to reduce but not so fast for oxygen transport. J. Am. Chem. Soc. 137, 47354748 (2015).
66. Chang, C-P., Chu, M-W., Jeng, H.T., Cheng, S-L., Lin, J.G., Yang, J-R., and Chen, C.H.: Condensation of two-dimensional oxide-interfacial charges into one-dimensional electron chains by the misfit-dislocation strain field. Nat. Commun. 5, 3522 (2014).
67. Pandya, S., Damodaran, A.R., Xu, R., Hsu, S-L., Agar, J.C., and Martin, L.W.: Strain-induced growth instability and nanoscale surface patterning in perovskite thin films. Sci. Rep. 6, 26075 (2016).
68. Sandiumenge, F., Bagués, N., Santiso, J., Paradinas, M., Pomar, A., Konstantinovic, Z., Ocal, C., Balcells, L., Casanove, M-J., and Martínez, B.: Misfit dislocation guided topographic and conduction patterning in complex oxide epitaxial thin films. Adv. Mater. Interfaces 3, 1600106 (2016).
69. Santiso, J., Roqueta, J., Bagués, N., Frontera, C., Konstantinovic, Z., Lu, Q., Yildiz, B., Martínez, B., Pomar, A., Balcells, L., and Sandiumenge, F.: Self-arranged misfit dislocation network formation upon strain release in La0.7Sr0.3MnO3/LaAlO3(100) epitaxial films under compressive strain. ACS Appl. Mater. Interfaces 8, 1682316832 (2016).
70. Santiso, J., Balcells, L., Konstantinovic, Z., Roqueta, J., Ferrer, P., Pomar, A., Martínez, B., and Sandiumenge, F.: Thickness evolution of the twin structure and shear strain in LSMO films. CrystEngComm 15, 39083918 (2013).
71. Urushibara, Y., Morimoto, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1−x Sr x MnO3 . Phys. Rev. B 51, 14103 (1995).
72. Martin, M.C., Shirane, G., Endoh, Y., Hirota, K., Moritomo, Y., and Tokura, Y.: Magnetism and structural distortion in the La0.7Sr0.3MnO3 metallic ferromagnet. Phys. Rev. B 53, 1428514290 (1996).
73. Tselev, A., Vasudevan, R.K., Gianfrancesco, A.G., Qiao, L., Meyer, T.L., Lee, H.N., Biegalski, M.D., Baddorf, A.P., and Kalinin, S.V.: Growth mode transition in complex oxide heteroepitaxy: Atomically resolved studies. Cryst. Growth Des. 16, 27082716 (2016).
74. Breckenfeld, E., Shah, A.B., and Martin, L.W.: Strain evolution in non-stoichiometric heteroepitaxial thin-film perovskites. J. Mater. Chem. C 1, 80528059 (2013).
75. Martin, L.W., Chu, Y-H., and Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng., R 68, 89133 (2010).
76. Moyer, J.A., Mangalam, R.V.K., Martin, L.W.: Epitaxial growth of magnetic-oxide thin films. In Epitaxial Growth of Complex Metal Oxides, Koster, G., Huijben, M., and Rijnders, G., eds. (Elsevier, Amsterdam, 2015), pp. 129172.
77. Boschker, H., Verbeeck, J., Egoavil, R., Bals, S., van Tendeloo, G., Huijben, M., Houwman, E.P., Koster, G., Blank, D.A., and Rijnders, G.: Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces. Adv. Funct. Mater. 22, 22352240 (2012).
78. Dagotto, E.: Playing with the geometry of oxide heterostructures. Physics 2, 12 (2009).
79. Harrison, W.A., Kraut, E.A., Waldrop, J.R., and Grant, R.W.: Polar heterojunction interfaces. Phys. Rev. B 18, 44024410 (1978).
80. Nakawaga, N., Hwang, H.Y., and Muller, D.A.: Why some interfaces cannot be sharp. Nat. Mater. 5, 204209 (2006).
81. Sankara Rama Krishnan, P.S., Morozovska, A.N., Eliseev, E.A., Ramasse, Q.M., Kepaptsoglou, D., Liang, W-I., Chu, Y-H., Munroe, P., and Nagarajan, V.: Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. J. Appl. Phys. 115, 054103 (2014).
82. Chambers, S.A., Engelhard, M.H., Shutthanandan, V., Zhu, Z., Droubay, T.C., Qiao, L., Sushko, P.V., Feng, T., Lee, H.D., Gustafsson, T., Garfunkel, E., Shah, A.B., Zuo, J-M., and Ramasse, Q.M.: Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 65, 317352 (2010).
83. Bagués, N.: Atomic and electronic structure of self-organized defects in epitaxial films of functional perovskite-type oxides. Ph.D. thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2017.
84. Pond, R.C. and Vlachavas, D.S.: Bicrystallography. Proc. R. Soc. London, Ser. A 386, 95143 (1983).
85. He, J., Borisevich, A., Kalinin, S.V., Pennycook, S.J., and Pantelides, S.T.: Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).
86. Hwang, J., Zhang, J.Y., and Stemmer, S.: Nanoscale quantification of octahedral tilts in perovskite films. Appl. Phys. Lett. 100, 191909 (2012).
87. Brahlek, M., Choquette, A.K., Smith, C.R., Engel-Herbert, R., and May, S.: Structural refinement of Pbnm-type perovskite films from analysis of half-order diffraction peaks. J. Appl. Phys. 121, 045303 (2017).
88. Romanov, A.E., Vojta, A., Pompe, W., Lefevre, M.J., and Speck, J.S.: Domain patterns in (111) oriented tetragonal ferroelectric films. Phys. Status Solidi A 172, 225253 (1999).
89. Konstantinovic, Z., Santiso, J., Colson, D., Forget, A., Balcells, L., and Martínez, B.: Self-organization processes in highly epitaxial La2/3Sr1/3MnO3 thin films grown on SrTiO3 (001) substrates. J. Appl. Phys. 105, 063919 (2009).
90. Maurice, J-L., Pailloux, F., Barthélémy, A., Durand, O., Imhoff, D., Lyonnet, R., Rocher, A., and Contour, A.: Strain relaxation in the epitaxy of La2/3Sr1/3MnO3 grown by pulsed-laser deposition on SrTiO3(001). Philos. Mag. 83, 32013224 (2003).
91. Jiang, J., Henry, L.L., Gnanasekar, K.I., Chen, C., and Meletis, E.I.: Self-assembly of highly epitaxial (La,Sr)MnO3 nanorods on (001) LaAlO3 . Nano Lett. 4, 741745 (2004).
92. Lebedev, O.I., Van Tendeloo, G., Amelinckx, S., Ju, H.L., and Krishnan, K.M.: High-resolution electron microscopy study of strained epitaxial La0.7Sr0.3MnO3 thin films. Philos. Mag. 80, 673691 (2000).
93. Herpers, A., O’Shea, K.J., MacLaren, D.A., Noyong, M., Rösgen, B., Simon, U., and Dittmann, R.: Competing strain relaxation mechanisms in epitaxially grown Pr0.48Ca0.52MnO3 on SrTiO3 . APL Mater. 2, 106106 (2014).
94. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and calcogenides. Acta Cryst. A 32, 751767 (1976).
95. Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D.: Structural phase diagram of La1−x Sr x MnO x−δ: Relationship to magnetic and transport properties. Phys. Rev. B 54, 61726183 (1996).
96. Liao, Z., Gauquelin, N., Green, R.J., Macke, S., Gonnissen, J., Thomas, S., Zhong, Z., Li, L., Si, L., Van Aert, S., Hansmann, P., Held, K., Xia, J., Verbeeck, J., Van Tendeloo, G., Sawatzky, G.A., Koster, G., Huijben, M., and Rijnders, G.: Thickness dependent properties in oxide heterostructures driven by structurally induced metal–oxygen hybridization variations. Adv. Funct. Mater. 27, 1606717 (2017).
97. Dong, L., Schnitker, J., Smith, R.W., and Srolovitz, D.J.: Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study. J. Appl. Phys. 83, 217227 (1998).
98. Angel, R.J., Zhao, J., and Ross, N.L.: General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys. Rev. Lett. 95, 025503 (2005).
99. Zhao, J., Ross, N.L., and Angel, R.J.: New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 60, 263271 (2004).
100. Brown, I.D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 41, 244247 (1985).
101. Riedl, T., Gemming, T., Dörr, K., Luysberg, M., and Wetzig, K.: Mn valency at La0.7Sr0.3MnO3/SrTiO3 (001) thin film interfaces. Microsc. Microanal. 15, 213221 (2009).
102. Jalili, H., Han, J.W., Kuru, Y., Cai, Z., and Yildiz, B.: New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3 . J. Phys. Chem. Lett. 2, 801807 (2011).
103. Lee, W., Han, J.W., Chen, Y., Cai, Z., and Yildiz, B.: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 79097925 (2013).
104. Herger, R., Willmott, P.R., Schlepütz, C.M., Björck, M., Pauli, S.A., Patterson, B.D., Kumah, D., Clark, R., Yacobi, Y., and Döbeli, M.: Structure determination of monolayer-by-monolayer grown La1−x Sr x MnO3 thin films and the onset of magnetoresistance. Phys. Rev. B 77, 085401 (2008).
105. Dulli, H., Dowben, P.A., Liou, S.H., and Plummer, E.W.: Surface segregation and restructuring of colossal-magnetoresistant manganese perovskites La0.65Sr0.35MnO3 . Phys. Rev. B 62, R14629 (2000).
106. Abellán, P., Zabaleta, J., Santiso, J., Casanove, M-J., Dix, N., Aguiar, J., Browning, N.D., Mestres, N., Puig, T., Obradors, X., and Sandiumenge, F.: Interface structure governed by plastic and structural dissimilarity in perovskite La0.7Sr0.3MnO3 nanodots on rock-salt MgO substrates. Appl. Phys. Lett. 100, 083104 (2012).
107. MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314320 (2008).
108. Harrington, S.A., Zhai, J., Denev, S., and MacManus-Driscoll, J.L.: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6, 491495 (2011).
109. MacManus-Driscoll, J.L., Suwardi, A., and Wang, H.: Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides. MRS Bull. 40, 933942 (2015).
110. Moreno, C., Abellán, P., Hassini, A., Ruyter, A., Del Pino, A.P., Sandiumenge, F., Casanove, M-J., Santiso, J., Puig, T., and Obradors, X.: Spontaneous outcropping of self-assembled insulating nanodots in solution derived metallic ferromagnetic La0.7Sr0.3MnO3 films. Adv. Funct. Mater. 19, 21392146 (2009).
111. Pomar, A., Konstantinovic, Z., Bagués, N., Roqueta, J., Lòpez-Mir, L., Balcells, L., Frontera, C., Mestres, N., Gutiérrez-Llorente, A., Scepanovic, M., Lazarevic, N., Popovic, Z.V., Sandiumenge, F., Martínez, B., and Santiso, J.: Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films. Front. Phys. (2016). http://dx.doi.org/10.3389/fphy.2016.00041.
112. Asaro, R.J. and Tiller, W.A.: Interface 1morphology development during stress corrosion cracking: Part I. Via surface diffusion. Metall. Trans. 3, 17891796 (1972).
113. Grinfeld, M.A.: Instability of the separation boundary between a stressed elastic body and a melt. Sov. Phys. Dokl. 31, 831835 (1986).
114. Srolovitz, J.D.: On the stability of surfaces of stressed solids. Acta Metall. 37, 621625 (1989).
115. Teichert, C.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335432 (2002).
116. Abellán, P., Sandiumenge, F., Casanove, M-J., Gibert, M., Palau, A., Puig, T., and Obradors, X.: Interaction betrween solution derived BaZrO3 nanodot interfacial templates and YBa2Cu3O7 films leading to enhanced critical currents. Acta Mater. 59, 20752082 (2011).
117. Chu, M-W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., and Gössele, U.: Impact of misfit dislocations on the polarization instability of epitaxial nanostructure ferroelectric perovskites. Nat. Mater. 3, 8790 (2004).
118. Zabaleta, J., Valencia, S., Kronast, F., Moreno, C., Abellán, P., Gázquez, J., Sandiumenge, F., Puig, T., Mestres, N., and Obradors, X.: Photoemission electron microscopy study of sub-200 nm self-assembled La0.7Sr0.3MnO3 epitaxial islands. Nanoscale 5, 29902998 (2013).
119. Gibert, M., Abellán, P., Martínez, L., Román, E., Crespi, A., Sandiumenge, F., Puig, T., and Obradors, X.: Orientation and shape selection of self-assembled epitaxial Ce1−x Gd x O2−y nanostructures grown by chemical solution deposition. CrystEngComm 13, 67196727 (2011).
120. Gibert, M., Abellán, P., Benedetti, A., Puig, T., Sandiumenge, F., García, A., and Obradors, X.: Self-organized Ce1−x Gd x O2−y nanowire networks with very fast coarsening driven by attractive elastic interactions. Small 6, 27162724 (2010).
121. Kim, Y., Han, H., Kim, Y., Lee, W., Alexe, M., Baik, S., and Kim, J.K.: Untrahigh density array of epitaxial nanoislands on conducting substrates. Nano Lett. 10, 21412146 (2010).
122. Carretero-Genevrier, A., Mestres, N., Puig, T., Hassini, A., Oró, J., Pomar, A., Sandiumenge, F., Obradors, X., and Ferain, E.: Single-crystalline La0.7Sr0.3MnO3 nanowires by polymer-template-directed chemical solution synthesis. Adv. Mater. 20, 36723677 (2008).
123. Sánchez, F., Ocal, C., and Fontcuberta, J.: Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. Chem. Soc. Rev. 43, 22722285 (2014).
124. Cavallaro, A., Ballesteros, B., Bachelet, R., and Santiso, J.: Heteroepitaxial orientation control of YSZ films by selective growth on SrO-, TiO2-terminated SrTiO3 crystal surfaces. CrystEngComm 13, 16251631 (2011).
125. Shiryaev, S.Y., Jensen, F., Hansen, J.L., Petersen, J.W., and Larsen, A.N.: Nanoscale structuring by misfit dislocations in Si1−x Ge x /Si epitaxial systems. Phys. Rev. Lett. 78, 503506 (1997).
126. Häusler, K., Eberl, K., Noll, F., and Trampert, A.: Strong alignment of self-assembling InP quantum dots. Phys. Rev. B 54, 49134918 (1996).
127. Springholtz, G. and Wiesauer, K.: Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. Phys. Rev. Lett. 88, 015507 (2002).
128. Lee, Y-W. and Clemens, B.M.: Strain-assisted nanoscale patterning of Co thin films. Phys. Rev. B 71, 245416 (2005).
129. Brune, H., Giovannini, M., Bromann, K., and Kern, K.: Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394, 451453 (1998).
130. Zeljkovic, I., Walkup, D., Assaf, B.A., Scipioni, K.L., Sankar, R., Chou, F., and Madhavan, V.: Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. Nat. Nanotechnol. 10, 849853 (2015).
131. Hull, R. and Bean, J.C.: Misfit dislocations in lattice-mismatched epitaxial films. Crit. Rev. Solid State Mater. Sci. 17, 507546 (1992).
132. Yang, B., Liu, F., and Lagally, M.G.: Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 92, 025502 (2004).
133. Farokhipoor, S., Magén, C., Venkatesan, S., Íñiguez, J., Daumont, C.J.M., Rubí, D., Snoeck, E., Mostovoy, M., de Graaf, C., Müller, A., Döblinger, M., Scheu, C., and Noheda, B.: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxid. Nature 515, 379383 (2014).
134. Seidel, J., Singh-Bhalla, G., He, Q., Yang, S-Y., Chu, Y-H., and Ramesh, R.: Domain wall functionality in BiFeO3 . Phase Transitions 86, 5366 (2013).
135. Balcells, L., Paradinas, M., Baguès, N., Domingo, N., Moreno, R., Galceran, R., Walls, M., Santiso, J., Konstantinovic, Z., Pomar, A., Casanove, M-J., Ocal, C., Martínez, B., and Sandiumenge, F.: Enhanced conduction and ferromagnetic order at (100)-type twin walls in La0.7Sr0.3MnO3 thin films. Phys. Rev. B 92, 075111 (2015).
136. Kittel, C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965971 (1946).
137. Lukyanchuk, I.A., Schilling, A., Gregg, J.M., Catalan, G., and Scott, J.F.: Origin of ferroelastic domains in free-standing single-crystal ferroelectric films. Phys. Rev. B 79, 144111 (2009).
138. Konstantinović, Z., Santiso, J., Balcells, L., and Martínez, B.: Strain-driven self-assembled network of antidots in complex oxide thin films. Small 5, 265 (2009).
139. Pomar, A., Santiso, J., Sandiumenge, F., Roqueta, J., Bozzo, B., Fronera, C., Balcells, L., Martínez, B., and Konstantinovic, Z.: Growth kinetics engineered magnetoresistance response La2/3Sr1/3MnO3 thin films. Appl. Phys. Lett. 104, 152406 (2014).
140. Konstantinović, Z., Sandiumenge, F., Peńa, L., Santiso, J., Balcells, L., and Martínez, B.: Self-assembled pit arrays as templates for the integration of Au nano-crystals in oxide surfaces. Nanoscale 5, 10011008 (2013).
141. de Sousa Pereira, S.M., Martins, M.A., Trindade, T., Watson, I.M., Zhu, D., and Humphreys, C.J.: Controlled integration of nanocrystals in inverted hexagonal nano-pits at the surface of light-emitting heterostructures. Adv. Mater. 20, 10381043 (2008).
142. Liliental-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J.: Formation mechanism of nanotubes in GaN. Phys. Rev. Lett. 79, 28352838 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed