Skip to main content Accessibility help

Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications

  • A. Leary (a1), V. Keylin (a1), A. Devaraj (a2), V. DeGeorge (a1), P. Ohodnicki (a3) and M.E. McHenry (a1)...

Magnetic nanocomposites, annealed under stress, are investigated for application in inductive devices. Stress annealed Co-based metal/amorphous nanocomposites (MANCs) previously demonstrated induced magnetic anisotropies greater than an order of magnitude larger than field annealed Co-based MANCs and response to applied stress twice that of Fe-based MANCs. Transverse magnetic anisotropies and switching by rotational processes impact anomalous eddy current losses at high frequencies. Here we review induced anisotropies in soft magnetic materials and show new Co-based MANCs having seven times the response to stress annealing as compared to Fe-based MANC systems. This response correlates with the alloying of early transition metal elements (TE) that affect both induced anisotropies and resistivities. At optimal alloy compositions, these alloys exhibit a nearly linear BH loop, with tunable permeabilities. The electrical resistivity is not a function of processing stress but trends in electrical resistivity and induced anisotropy with choice and concentration of TE content are clearly resolved. Previously reported and record-level induced anisotropies, K u, ∼20 kJ/m3 (anisotropy fields, H K ∼ 500 Oe), in stress annealed Co-rich MANCs are increased to K u ∼ 70 kJ/m3 (H K > 1800 Oe) in new systems.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Hefner, A.R.: High-voltage, high-frequency devices for solid state power substation and grid power converters. In High Megawatt Power Converter Technology R&D Roadmap Workshop. (2008).
3. Brown, G.V., Kascak, A.F., Ebihara, B., Johnson, D., Choi, B., Stebert, M., and Buccieri, C.: NASA Glenn Research Center Program in high power density motors for aeropropulsion (2005).
4. Power Electronics Research and Development Program Plan (2011).
5. Shen, W., Wang, F., Boroyevich, D., and Tipton, C.W.: Loss characterization and calculation of nanocrystalline cores for high-frequency magnetics applications. IEEE Trans. Power Electron. 23, 475484 (2008).
6. McHenry, M.E., Willard, M.a., and Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291433 (1999).
7. Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., and Liu, J.P.: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821842 (2011).
8. Willard, M.A. and Daniil, M.: Nanocrystalline soft magnetic alloys two decades of progress. In Handbook of Magnetic Materials, Vol. 21 (Elsevier B.V., Amsterdam, 2013).
9. Kurniawan, M., Roy, R.K., Panda, A.K., Greve, D.W., and Ohodnicki, P.R.: Interplay of stress, temperature, and giant magnetoimpedance in amorphous soft magnets. Appl. Phys. Lett. 105, 15 (2014).
10. Kurniawan, M., Roy, R.K., Panda, a.K., Greve, D.W., Ohodnicki, P., and McHenry, M.E.: Temperature-dependent giant magnetoimpedance effect in amorphous soft magnets. J. Electron. Mater., 43(112), 45764581 (2014). doi: 10.1007/s11664-014-3469-7.
11. Kernion, S.J., Ohodnicki, P.R. Jr., Grossmann, J., Leary, A., Shen, S., Keylin, V., Huth, J.F., Horwath, J., Lucas, M.S., and McHenry, M.E.: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).
12. Ohodnicki, P.R., Long, J., Laughlin, D.E., McHenry, M.E., Keylin, V., and Huth, J.: Composition dependence of field induced anisotropy in ferromagnetic (Co,Fe)89Zr7B4 and (Co,Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).
13. Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E., Keylin, V., and Huth, J.: Temperature stability of field induced anisotropy in soft ferromagnetic Fe,Co-based amorphous and nanocomposite ribbons. J. Appl. Phys. 105, 07A322 (2009).
14. Leary, A.M., Ohodnicki, P.R., and McHenry, M.E.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772781 (2012).
15. Daniil, M., Ohodnicki, P.R., Mchenry, M.E., and Willard, M.A.: Shear band formation and fracture behavior of nanocrystalline (Co,Fe)-based alloys. Philos. Mag. 90, 15471565 (2010).
16. Heil, T.M., Wahl, K.J., Lewis, A.C., Mattison, J.D., and Willard, M.A.: Nanocrystalline soft magnetic ribbons with high relative strain at fracture. Appl. Phys. Lett. 90, 212508 (2007).
17. DeGeorge, V., Shen, S., Ohodnicki, P., Andio, M., and McHenry, M.E.: Multiphase resistivity model for magnetic nanocomposites developed for high frequency, high power transformation. J. Electron. Mater. 43, 96108 (2013).
18. Leary, A.M., Keylin, V., Ohodnicki, P.R., and McHenry, M.E.: Stress induced anisotropy in CoFeMn soft magnetic nanocomposites. J. Appl. Phys. 117, 17A338 (2015).
19. Friedel, J.: Metallic alloys. Nuovo Cimento VII, 287311 (1958).
20. Slater, J.C.: Electronic structure of alloys. J. Appl. Phys. 8, 385 (1937).
21. Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899904 (1938).
22. Mchenry, M.E. and Laughlin, D.E.: In Phys. Metall., Vol. 2 (Elsevier B.V., Amsterdam, 2014); pp. 18812008.
23. Anisimov, V.I., Antropov, V.P., Lichtenstein, A.I., Gubanov, V.A., and Postnikov, A.V.: Electronic structure and magnetic properties of 3d impurities in ferromagnetic metals. Phys. Rev. B 37, 5598 (1988).
24. Stepanyuk, V.S., Zeller, R., Dederichs, P.H., and Mertig, I.: Electronic structure and magnetic properties of dilute Co alloys with transition-metal impurities. Phys. Rev. B 49(8), 51575164 (1994).
25. Corb, B.W. and O'Handley, R.C.: Magnetic properties and short-range order in Co–Nb–B alloys. Phys. Rev. B 31, 72137218 (1985).
26. Malozemoff, A.P., Williams, A.R., and Moruzzi, V.L.: “Band-gap theory” of strong ferromagnetism: Application to concentrated crystalline and amorphous Fe- and Co-metalloid alloys. Phys. Rev. B 29, 16201632 (1984).
27. Ghemawat, A.M., McHenry, M.E., and O'Handley, R.C.: Magnetic moment suppression in rapidly solidified Co–TE–B alloys. J. Appl. Phys. 63, 33883390 (1988).
28. Ramalingum, B., van Ek, J., MacLaren, J.M., and McHenry, M.E.: Electronic structure and bonding in titanium carbosulfide. Philos. Mag. B 80, 379394 (2000).
29. Ohodnicki, P.R., Keylin, V., McWilliams, H.K., Laughlin, D.E., and McHenry, M.E.: Phase evolution and field-induced magnetic anisotropy of the nanocomposite three-phase fcc, hcp, and amorphous soft magnetic alloy Co[sub 89]Zr[sub 7]B[sub 4]. J. Appl. Phys. 103, 07E740 (2008).
30. Hsiao, A., McHenry, M.E., Laughlin, D.E., Kramer, M.J., Ashe, C., and Ohkubo, T.: The thermal, magnetic, and structural characterization of the crystallization amorphous soft magnetic ribbon. IEEE Trans. Magn. 38, 30393044 (2002).
31. MacLaren, J.M., Schulthess, T.C., Butler, W.H., Sutton, R., and McHenry, M.: Electronic structure, exchange interactions, and Curie temperature of FeCo. J. Appl. Phys. 85, 4833 (1999).
32. Ping, D.H., Wu, Y.Q., Hono, K., Willard, M.A., Laughlin, D.E., and McHenry, M.E.: Microstructural characterization. Scr. Mater. 45, 781786 (2001).
33. Zener, C.: Classical theory of the temperature dependence of magnetic anisotropy energy. Phys. Rev. 96, 13 (1954).
34. Callen, H.B. and Callen, E.: The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l + 1)/2 power law. J. Phys. Chem. Solids 27, 12711285 (1966).
35. Herzer, G., Budinsky, V., and Polak, C.: Magnetic properties of Fe Cu Nb Si B nanocrystallized by flash annealing under high tensile stress. Phys. Status Solidi B 248, 23822388 (2011).
36. Iwanabe, H., Lu, B., McHenry, M.E., and Laughlin, D.E.: Thermal stability of the nanocrystalline Fe–Co–Hf–B–Cu alloy. J. Appl. Phys. 85, 4424 (1999).
37. Willard, M.A., Laughlin, D.E., McHenry, M.E., Thoma, D., Sickafus, K., Cross, J.O., and Harris, V.G.: Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773 (1998).
38. Lucas, M.S., Bourne, W.C., Sheets, A.O, Brunke, L., Alexander, M.D., Shank, J.M., Michel, E., Semiatin, S.L., Horwath, J., and Turgut, Z.: Nanocrystalline Hf and Ta containing FeCo based alloys for high frequency applications. Mater. Sci. Eng., B 176, 10791084 (2011).
39. Leary, A.M., Ohodnicki, P.R., McHenry, M.E., Keylin, V., Huth, J., Kernion, S.J.: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. U.S. Patent Application 2014/0338793 A1, filed May 15, 2014.
40. Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139 (2012).
41. Tan, F.D., Vollin, J.L., and Cuk, S.M.: A practical approach for magnetic core-loss characterization. IEEE Trans. Power Electron. 10, 124130 (1995).
42. Hou, D., Mu, M., Lee, F.C., and Li, Q.: New core loss measurement method with partial cancellation concept. Presented at the 2014 IEEE Appl. Power Electron. Conf. Expo.—APEC 2014, pp. 746751 (2014). doi: 10.1109/APEC.2014.6803391.
43. Corb, B.W., O'Handley, R.C., and Grant, N.J.: Chemical bonding and local symmetry in cobalt- and iron-metalloid alloys. J. Appl. Phys. 53, 77287730 (1982).
44. O'Handley, R.C.: Physics of ferromagnetic amorphous alloys. J. Appl. Phys. 62, R15 (1987).
45. Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., eds.: Binary alloy phase diagrams (ASM International, Materials Park, 1990).
46. Ohodnicki, P.R., Qin, Y.L., Laughlin, D.E., McHenry, M.E., Kodzuka, M., Ohkubo, T., Hono, K., and Willard, M.A.: Composition and non-equilibrium crystallization in partially devitrified Co-rich soft magnetic nanocomposite alloys. Acta Mater. 57, 8796 (2009).
47. Goswami, R. and Willard, M.: Microstructure evolution in rapidly solidified ferromagnetic (Co0.95Fe0.05)89Zr7B4 nanocrystalline alloys. Scr. Mater. 59, 459462 (2008).
48. Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 162 (2012).
49. Ishida, K.: Direct estimation of stacking fault energy by thermodynamic analysis. Phys. Status Solidi 36, 717728 (1976).
50. Shen, S., Ohodnicki, P.R., Kernion, S.J., and Mchenry, M.E.: Two-current model of the composition dependence of resistivity in amorphous (Fe100−x Co x )89−y Zr7B4Cu y alloys using a rigid-band assumption. J. Appl. Phys. 112, 103705 (2012).
51. Degeorge, V., Devaraj, A., Keylin, V., Cui, J., and Mchenry, M.: Mass balance and atom probe tomography (APT) characterization of soft magnetic (Fe65Co35)79.5B13Si2Nb4Cu1.5 nanocomposites. IEEE Trans. Magn. 51, 1821 (2014).
52. Calbick, C.J. and Marcus, R.B.: Application of the twinning transformation matrix to derivation of the generalized reciprocal lattice with multiple diffraction. Acta Crystallogr. 23, 1217 (1967).
53. Panin, V.E. and Fadin, V.P.: Relation between stacking fault energy and the electronic structure of a metal or alloy. Sov. Phys. J. 12, 11911197 (1972).
54. Skomski, R. and Coey, J.M.D.: Exchange coupling and energy product in random two-phase aligned magnets. IEEE Trans. Magn. 30, 607609 (1994).
55. Herzer, G.: In Handb. Magn. Mater., Vol. 10 (Elsevier, Amsterdam, 1997); pp. 415462.
56. Suzuki, K. and Herzer, G.: Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scr. Mater. 67, 548553 (2012).
57. Becker, R. and Doring, W.: Ferromagnetismus (Springer-Verlag, Berlin, 1938).
58. Becker, R. and Kersten, M.: Die Magnetisierung von Nickeldraht unter starkem Zug. Z. Phys. 64, 660681 (1930).
59. Kersten, M.: Problems of the Technical Magnetisation Curve (Springer, Berlin, 1938).
60. Ott, R.T., Kramer, M.J., Besser, M.F., and Sordelet, D.J.: High-energy x-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass. Acta Mater. 54, 24632471 (2006).
61. Ohnuma, M., Herzer, G., Kozikowski, P., Polak, C., Budinsky, V., and Koppoju, S.: Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy. Acta Mater. 60, 12781286 (2012).
62. Herzer, G.: Creep induced magnetic anisotropy in nanocrystalline Fe–Cu–Nb–Si–B alloys. IEEE Trans. Magn. 30, 48004802 (1994).
63. Alves, F., Desmoulins, J.B., Herisson, D., Rialland, J.F., and Costa, F.: Stress-induced anisotropy in Finemet- and Nanoperm-type nanocrystalline alloys using flash annealing. J. Magn. Magn. Mater. 216, 387390 (2000).
64. Ohnuma, M., Hono, K., Yanai, T., Fukunaga, H., and Yoshizawa, Y.: Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys. Appl. Phys. Lett. 83, 28592861 (2003).
65. O'Handley, R.C.: Magnetostriction of Co80−x T x B20 (T = Fe, Mn, Cr, or V) glasses. J. Appl. Phys. 52, 18411843 (1981).
66. Barandiaran, J.M., Hernando, A., Madurga, V., Nielsen, O.V., Vazquez, M., and Vazquez-Lopez, M.: Temperature, stress, and structural-relaxation dependence of the magnetostriction in (Co0.94Fe0.06)75Si15B10 glasses. Phys. Rev. B 35, 50665071 (1987).
67. Hernando, A.: Influence of the tensile stress on the magnetostriction resistivity and magnetic anisotropy of Co-rich metallic glasses. TSRO and CSRO correlation. Phys. Scr. T24, 1121 (1988).
68. Haimovich, J., Jagielinski, T., and Egami, T.: Magnetic and structural effects of anelastic deformation of an amorphous alloy. J. Appl. Phys. 57, 35813583 (1985).
69. Sucksmith, W. and Thompson, J.E.: The magnetic anisotropy of cobalt. Proc. R. Soc. A 225, 362375 (1954).
70. Chikazumi, S., Suzuki, K., and Iwata, H.: Studies on the magnetic anisotropy induced by cold rolling of ferromagnetic crystal (I) iron–nickel alloys. J. Phys. Soc. Jpn. 12, 12591275 (1957).
71. Chin, G.Y.: Slip-induced directional order in Fe–Ni alloys. II. Experimental observations. J. Appl. Phys. 38, 26232629 (1967).
72. Chikazumi, S., Suzuki, K., and Iwata, H.: Studies on the magnetic anisotropy induced by cold rolling of ferromagnetic crystal, II. Iron–aluminum alloys. J. Phys. Soc. Jpn. 15, 250260 (1960).
73. Chin, G.Y.: Slip-induced directional order theory for B2-type superlattiees. Mater. Sci. Eng. 1, 7790 (1966).
74. Chin, G.Y.: Slip-induced directional order in Fe–Ni alloys. I. Extension of the Chikazumi–Suzuki–Iwata theory. J. Appl. Phys. 36, 2915 (1965).
75. Paige, D.M., Szpunar, B., and Tanner, B.K.: The magnetocrystalline anisotropy of cobalt. J. Magn. Magn. Mater. 44, 239248 (1984).
76. Takahashi, M., Kadowaki, S., Wakiyama, T., Anayama, T., and Takahashi, M.: Magnetic anisotropy induced by magnetic annealing and cold rolling for Co and Co–Ni alloys. I. Experimental. J. Phys. Soc. Jpn. 47, 11101116 (1979).
77. Takahashi, M., Kadowaki, S., Wakiyama, T., Anayama, T., and Takahashi, M.: Magnetic anisotropy induced by magnetic annealing and cold rolling for Co and Co–Ni alloys II. Analysis by a statistical model. J. Phys. Soc. Jpn. 47, 11171124 (1979).
78. Takahashi, M., Kadowaki, S., Wakiyama, T., Anayama, T., and Takahashi, M.: Magnetocrystalline anisotropy of Co and CoNi alloys. J. Phys. Soc. Jpn. 44, 825832 (1978).
79. Wakiyama, T., Wolfe, H.C., Graham, C.D., and Rhyne, J.J.: Magnetic and crystalline properties of hexagonal Co–Fe alloys. AIP Conf. Proc. 921, 921940 (1973).
80. Tanaka, T., Takahashi, M., Kadowaki, S., and Wakiyama, T.: Magnetic anisotropy induced by cold rolling in Co and Co–Fe alloys. J. Appl. Phys. 69, 396 (1991).
81. Takahashi, M. and Kadowaki, S.: Anomalous temperature dependence of magnetocrystalline anisotropy in dilute cobalt–iron alloys. J. Phys. Soc. Jpn. 48, 13911392 (1980).
82. Tanaka, T., Takahashi, M., and Kadowaki, S.: Induced uniaxial magnetic anisotropy and preferred orientation in Co and Co–Ni alloy by magnetic annealing. J. Appl. Phys. 84, 67686772 (1998).
83. O'Handley, R.C.: Modern Magnetic Materials (John Wiley & Sons, Inc., New York, 2000).
84. Hall, R.C.: Single crystal anisotropy and magnetostriction constants of several ferromagnetic materials including alloys of NiFe, SiFe, AlFe, CoNi, and CoFe. J. Appl. Phys. 30, 816819 (1959).
85. Chikazumi, S.: Magnetic anisotropy induced by magnetic annealing and by cold working of Ni3Fe crystal. J. Appl. Phys. 29, 346 (1958).
86. English, A.T.: Effect of ordering on rolling-induced magnetic anisotropy in FeCo–2V. J. Appl. Phys. 38, 997 (1967).
87. Takahashi, M. and Kono, T.: Magnetic anisotropy induced by magnetic and stress annealing in Co, Co–Ni, and Co–Fe alloys. Jpn. J. Appl. Phys. 17, 361369 (1978).
88. Suzuki, T. et al.: Magnetic and magneto-optic properties of thick face-centered-cubic Co single-crystal films. Appl. Phys. Lett. 64, 27362738 (1994).
89. Mori, N., Ukai, T., and Kono, S.: Ferromagnetic anisotropy of double hexagonal Co–Fe alloy. J. Phys. Soc. Jpn. 37, 12781284 (1974).
90. Takahashi, M., Wakiyama, T., Anayama, T., Takahashi, M., and Suzuki, T.: Magnetic anisotropy in Co and Co–Ni single crystals deformed by cold rolling. J. Phys. Soc. Jpn. 38, 391399 (1975).
91. Johnson, R.T. and Dragsdorf, R.D.: The martensitic transformation in cobalt. J. Appl. Phys. 38, 618626 (1967).
92. DeGraef, M. and McHenry, M.E.: Structure of Materials (Cambridge University Press, Cambridge, 2012).
93. Iglesias, J.E.: Zhdanov's rules work both ways. Acta Crystallogr., Sect. A: Found. Crystallogr. 62, 195200 (2006).
94. Neel, L.: Anisotropie magnetique superficielle et surstructures d'orientation. J. Phys. Radium 15, 225239 (1954).
95. Aas, C.J., Szunyogh, L., and Chantrell, R.W.: Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co: A first-principles study. J. Phys.: Condens. Matter 25, 113 (2013).
96. Dieter, G.E.: Mechanical Metallurgy (McGraw Hill, New York, 1976).
97. McHenry, M.E., O'Handley, R.C., Dmowski, W., and Egami, T.: Magnetism in icosahedral structures (invited). J. Appl. Phys. 61, 42324236 (1987).
98. Mchenry, M.E., Eberhart, M.E., O'Handley, R.C., and Johnson, K.H.: Electronic structure and magnetism in amorphous alloys exhibiting local icosahedral order. J. Magn. Magn. Mater. 54, 279280 (1986).
99. Jones, N.J., McNerny, K.L., Wise, A.T., Sorescu, M., McHenry, M.E., and Laughlin, D.E.: Observations of oxidation mechanisms and kinetics in faceted FeCo magnetic nanoparticles. J. Appl. Phys. 107, 09A304 (2010).
100. Jones, N.J., Swaminathan, R., McHenry, M.E., and Laughlin, D.E.: Nucleation and growth model for {110}- and {111}-truncated nanoparticles. J. Mater. Res. 30, 30113019 (2015).
101. Swaminathan, R., Nuhfer, N.T., and McHenry, M.E.: 3-Dimensional morphologies of truncated ferrite nanoparticles. Microsc. Microanal. 11, 20042005 (2005).
102. Swaminathan, R., Willard, M.A., and McHenry, M.E.: Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch. Acta Mater. 54, 807816 (2006).
103. Barrett, C.: Structure of Metals (McGraw Hill, New York 1952).
104. Houska, C.R.: In Mater. Sci. Res., Ott, H.M. and Locke, S.R., eds.; Springer, Berlin 1965; pp. 111119.
105. Christian, J.W.: A note on deformation stacking faults in hexagonal close-packed lattices. Acta Crystallogr. 7, 415416 (1954).
106. Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1157 (1995).
107. Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279306 (2000).
108. Aoki, Y., Gotoh, Y., and Obi, Y.: On the phase diagram of the Co-rich Co–V alloy system. Phys. Status Solidi A 36, 149152 (1976).
109. Bertaut, E.F., Delapalme, A., and Pauthenet, R.: Rotation des spins dans le cobalt hexagonal. Solid State Commun. 1, 8184 (1963).
110. Flohrer, S., Schäfer, R., McCord, J., Roth, S., Schutlz, L., and Herzer, G.: Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Mater. 54, 32533259 (2006).
111. Ohnuma, M., Yanai, T., Hono, K., Nakano, M., Fukunaga, H., Yoshizawa, Y., and Herzer, G.: Stress-induced magnetic and structural anisotropy of nanocrystalline Fe-based alloys. J. Appl. Phys. 108, 16 (2010).
112. Hopkinson, J.: Magnetic and other physical properties of iron at a high temperature. Philos. Trans. R. Soc., A 180, 443 (1889).
113. Mazaleyrat, F. and Varga, L.K.: Thermo-magnetic transitions in two-phase nanostructured materials. IEEE Trans. Magn. 37, 22322235 (2001).
114. Herzer, G. and Varga, L.K.: Exchange softening in nanocrystalline alloys. J. Magn. Magn. Mater. 215–216, 506512 (2000).
115. Škorvánek, I. and O'Handley, R.C.: Fine-particle magnetism in nanocrystalline FeCuNbSiB at elevated temperatures. J. Magn. Magn. Mater. 140–144, 467468 (1995).
116. Franco, V., Conde, C.F., Conde, A., Kiss, L.F., Kaptás, D., Kemény, T., and Vincze, I.: Dipole–dipole interaction in superparamagnetic nanocrystalline Fe63.5Cr10Si13.5B9Cu1Nb3 . J. Appl. Phys. 90, 15581563 (2001).
117. Franco, V., Conde, C.F., Conde, A., and Ochin, P.: Mo-containing Finemet alloys: Microstructure and magnetic properties. J. Non-Cryst. Solids 287, 366369 (2001).
118. Bedanta, S., Eimüller, T., Kleemann, W., Rhensius, J., Stromberg, F., Amaladass, E., Cardoso, S., and Freitas, P.P.: Overcoming the dipolar disorder in dense CoFe nanoparticle ensembles: Superferromagnetism. Phys. Rev. Lett. 98, 1013 (2007).
119. Michels, A., Vecchini, C., Moze, O., Suzuki, K., Cadogan, J.M., Pranzas, P.K., and Weissmüller, J.: Dipole-field induced spin disorder in a nanocomposite soft magnet. Europhys. Lett. 72, 249255 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed