Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Zhao, Junhua Yu, Peishi and Dong, Shuhong 2016. The Influence of Crosslink Density on the Failure Behavior in Amorphous Polymers by Molecular Dynamics Simulations. Materials, Vol. 9, Issue. 4, p. 234.


    Wu, Jianyang Nagao, Shijo Zhang, Zhiliang and He, Jianying 2015. Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study. Engineering Fracture Mechanics, Vol. 150, p. 209.


    Zhao, Junhua Lu, Lixin and Rabczuk, Timon 2015. The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers. Computational Materials Science, Vol. 96, p. 567.


    Zhao, Junhua 2015. A nonlinear continuum model of van der Waals interactions in crystalline polymers. Acta Mechanica, Vol. 226, Issue. 10, p. 3495.


    Vu-Bac, N. Lahmer, T. Keitel, H. Zhao, J. Zhuang, X. and Rabczuk, T. 2014. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, Vol. 68, p. 70.


    Zhao, Junhua Jiang, Jin-Wu Wang, Lifeng Guo, Wanlin and Rabczuk, Timon 2014. Coarse-grained potentials of single-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids, Vol. 71, p. 197.


    Kamarudin, Muhammad Akmal Sahamir, Shahrir Razey Datta, Robi Shankar Long, Bui Duc Mohd Sabri, Mohd Faizul and Mohd Said, Suhana 2013. A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods. The Scientific World Journal, Vol. 2013, p. 1.


    Rafiee, Roham Rabczuk, Timon Pourazizi, Reza Zhao, Junhua and Zhang, Yancheng 2013. Challenges of the Modeling Methods for Investigating the Interaction between the CNT and the Surrounding Polymer. Advances in Materials Science and Engineering, Vol. 2013, p. 1.


    Zhang, Yancheng Zhao, Junhua Wei, Ning Jiang, Jinwu Gong, Yadong and Rabczuk, Timon 2013. Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer. Composites Part B: Engineering, Vol. 45, Issue. 1, p. 1714.


    Zhao, Junhua Jiang, Jin-Wu Wei, Ning Zhang, Yancheng and Rabczuk, Timon 2013. Thermal conductivity dependence on chain length in amorphous polymers. Journal of Applied Physics, Vol. 113, Issue. 18, p. 184304.


    Zhao, Junhua Wang, Lifeng Jiang, Jin-Wu Wang, Zhengzhong Guo, Wanlin and Rabczuk, Timon 2013. A comparative study of two molecular mechanics models based on harmonic potentials. Journal of Applied Physics, Vol. 113, Issue. 6, p. 063509.


    Zhao, Junhua Nagao, Shijo Odegard, Gregory M Zhang, Zhiliang Kristiansen, Helge and He, Jianying 2013. Size-dependent mechanical behavior of nanoscale polymer particles through coarse-grained molecular dynamics simulation. Nanoscale Research Letters, Vol. 8, Issue. 1, p. 541.


    Zhao, Junhua Guo, Wanlin and Rabczuk, Timon 2012. An analytical molecular mechanics model for the elastic properties of crystalline polyethylene. Journal of Applied Physics, Vol. 112, Issue. 3, p. 033516.


    Zhao, J.H. Nagao, S. and Zhang, Z.L. 2012. Loading and unloading of a spherical contact: From elastic to elastic–perfectly plastic materials. International Journal of Mechanical Sciences, Vol. 56, Issue. 1, p. 70.


    Zhao, Junhua Guo, Wanlin Zhang, Zhiliang and Rabczuk, Timon 2011. Size-dependent elastic properties of crystalline polymers via a molecular mechanics model. Applied Physics Letters, Vol. 99, Issue. 24, p. 241902.


    ×

Thermomechanical properties dependence on chain length in bulk polyethylene: Coarse-grained molecular dynamics simulations

  • Junhua Zhao, Shijo Nagao and Zhiliang Zhang (a1)
  • DOI: http://dx.doi.org/10.1557/JMR.2010.0061
  • Published online: 01 January 2011
Abstract

Mechanical and thermodynamical properties of bulk polyethylene have been scrutinized using coarse-grained (CG) molecular dynamics simulations. Entangled but cross-link-free polymer clusters are generated by the semicrystalline lattice method for a wide range chain length of alkane modeled by CG beads, and tested under compressive and tensile stress with various temperature and strain rates. It has been found that the specific volume and volumetric thermal expansion coefficient decrease with the increase of chain length, where the specific volume is a linear function of the bond number to all bead number ratios, while the thermal expansion coefficient is a linear rational function of the ratio. Glass-transition temperature, however, does not seem to be sensitive to chain length. Yield stress under tension and compression increases with the increase of the bond number to all bead number ratio and strain rate as well as with decreasing temperature. The correlation found between chain length and these physical parameters suggests that the ratio dominates the mechanical properties of the present CG-modeled linear polymer material.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: zhiliang.zhang@ntnu.no
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.P.V.K. Pant , J. Han , G.D. Smith , R.H. Boyd A molecular dynamics simulation of polyethylene. J. Chem. Phys. 99, 597(1993)

3.R.H. Boyd , R.H. Gee , J. Han , Y. Jin Conformational dynamics in bulk polyethylene: A molecular dynamics simulation study. J. Chem. Phys. 101, 788(1994)

4.J.R. Hanscomb , Y. Kaahwa High-temperature electrical conduction in polyethylene-terephthalate. II. Analysis. J. Phys. D: Appl. Phys. 12, 579(1979)

5.J.R. Hanscomb , Y. Kaahwa High-field transient conduction in PET in the microsecond-millisecond time range. J. Phys. D: Appl. Phys. 11, 725(1978)

6.A.M. Donald , E.J. Kramer Effect of strain history on craze microstructure. Polymer (Guildf.) 23, 457(1982)

8.C. G'sell , J.M. Hiver , A. Dahouin , A. Souahi Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031(1992)

9.E.M. Arruda , M.C. Boyce Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9, 697(1993)

10.M.C. Boyce , E.M. Arruda , R. Jayachandran The large strain compression, tension, and simple shear of polycarbonate. Polym. Eng. Sci. 34, 716(1994)

11.H.G.H. van Melick , L.E. Govaert , H.E.H. Meijer On the origin of strain hardening in glassy polymers. Polymer (Guildf.) 44, 2493(2003)

12.J.Y. He , Z.L. Zhang , M. Midttun , G. Fonnum , G.I. Modahl , H. Kristiansen , K. Redford Size effect on mechanical properties of micron-sized PS-DVB polymer particles. Polymer (Guildf.) 49, 3993(2008)

13.H. Eyring Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283(1936)

14.R.E. Robertson Theory for the plasticity of glassy polymers. J. Chem. Phys. 44, 3950(1966)

15.A.S. Argon A theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839(1973)

16.P.D. Wu , E. van der Giessen On improved network models for rubber elasticity and their applications to orientation in glassy polymers. J. Mech. Phys. Solids 41, 427(1993)

18.P.G. Whitten , H.R. Brown Polymer entanglement density and its influence on interfacial friction. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 76, 026101(2007)

19.A.V. Lyulin , N.K. Balabaev , M.A.J. Michels Correlated segmental dynamics in amorphous atactic polystyrene: A molecular dynamics simulation study. Macromolecules 35, 9595(2002)

20.N.F.A. van der Vegt , W.J. Briels , M. Wessling , H. Strathmann Free energy calculations of small molecules in dense amorphous polymers. Effect of the initial guess configuration in molecular dynamics studies. J. Chem. Phys. 105, 8849(1996)

21.R.M. Sok , H.J.C. Berendsen Time-dependent self-diffusion in a semidilute suspension of Brownian particles. J. Chem. Phys. 96, 4699(1992)

22.F. Zhang Molecular-dynamics simulation of solitary waves in polyethylene. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 56, 6077(1997)

23.F.M. Capaldi , M.C. Boyce , G.C. Rutledge Molecular response of a glassy polymer to active deformation. Polymer (Guildf.) 45, 1391(2004)

24.S. Nielsen , C.F. Lopez , G. Srinivas , M.L. Klein A coarse grain model for n-alkanes parameterized from surface tension data. J. Chem. Phys. 119, 7043(2003)

25.A.A. Louis Beware of density dependent pair potentials. J. Phys. Condens. Matter 14, 9187(2002)

26.R.L.C. Akkermans , W.J. Briels A structure-based coarse-grained model for polymer melts. J. Chem. Phys. 114, 1020(2001)

27.M. Zhang , F. Müller-Plathe The Soret effect in dilute polymer solutions: Influence of chain length, chain stiffness and solvent quality. J. Chem. Phys. 125, 124903(2006)

29.T. Terao , E. Lussetti , F. Müller-Plathe Non-equilibrium molecular dynamics methods for computing the thermal conductivity: Application to amorphous polymers. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75, 057701(2007)

30.M. Fermeglia , S. Pricl Multiscale modeling for polymer systems of industrial interest. Prog. Org. Coat. 58, 187(2007)

31.S. Pricl , M. Fermeglia , M. Ferrone , A. Asquini Scaling properties in the molecular structure of three-dimensional, nanosized phenylene-based dendrimers as studied by atomistic molecular dynamics simulations. Carbon 41, 2269(2003)

32.C.D. Wick , D.N. Theodorou Connectivity-altering Monte Carlo simulations of the end group effects on volumetric properties for poly(ethylene oxide). Macromolecules 37, 7026(2004)

33.J.L. Faulon Stochastic generator of chemical structure. (4) Building polymeric systems with specified properties. J. Comput. Chem. 22, 580(2001)

34.W. Shinoda , R. Devane , M.L. Klein Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33, 27(2007)

35.H.J.C. Beredsen , J.P.M. Postma , W.F. van Gunsteren , A. Dinola , J.R. Haak Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684(1984)

36.H. Takeuchi , R.J. Roe Molecular dynamics simulation of local chain motion in bulk amorphous polymers. II. Dynamics at glass transition. J. Chem. Phys. 94, 7458(1991)

37.S. Plimpton Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1(1995)

38.M.M. Rudek , J.A. Fisk , V.M. Chakarov , J.L. Katz Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n-alkanes. J. Chem. Phys. 105, 4707(1996)

40.G.T. Dee , T. Ougizawa , D.J. Walsh The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight. Polymer (Guildf.) 33, 3462(1992)

41.D.L. Turcotte , G. Schubert Geodynamics 2nd ed (Cambridge University Press, Cambridge2002)

42.J. Han , R.H. Gee , R.H. Boyd Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27, 7781(1994)

43.R.H. Gee , R.H. Boyd The role of the torsional potential in relaxation dynamics: A molecular dynamics study of polyethylene. Comput. Theor. Polym. Sci. 8, 93(1998)

45.F. Signorini , J.L. Barrat , M.L. Klein Structural relaxation and dynamical correlations in a molten state near the liquid–glass transition: A molecular dynamics study. J. Chem. Phys. 92, 1294(1990)

46.O.A. Hasan , M.C. Boyce Energy storage during inelastic deformation of glassy polymers. Polymer (Guildf.) 34, 5085(1993)

48.D.J. Plazek Anomalous viscoelastic properties of polymers: Experiments and explanations. J. Non-Cryst. Solids 353, 3783(2007)

50.K.L. Ngai , D.J. Plazek Resolution of sub-rouse modes of polystyrene by dissolution. Macromolecules 35, 9136(2002)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: