Skip to main content Accessibility help
×
Home

Time-dependent deformation behavior of freestanding and SiN x -supported gold thin films investigated by bulge tests

  • Benoit Merle (a1), Detlev Cassel (a2) and Mathias Göken (a3)

Abstract

A novel strain-rate jump method was developed for the plane-strain bulge test and used to investigate the time-dependent deformation behavior of gold thin films in the thickness range 100–400 nm. The experimental method is based on an abrupt variation of the pressurization rate. The evaluated strain-rate sensitivity was found to be five times higher for films in freestanding condition (m = 0.094) than for films tested on a SiN x substrate (m = 0.020). Bulge creep tests confirmed this increased time-dependence. The observation of the surface of the freestanding films after the creep tests provided evidence of apparent grain boundary sliding taking place next to intragranular plastic deformation. The out-of-plane deformation was presumably favored by the columnar microstructure of the samples, with grains extending between both free surfaces. In the case of SiN x -supported films, grain boundary sliding was prevented by the good adhesion of gold to the SiN x substrate.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: benoit.merle@fau.de

References

Hide All
1. Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427556 (2006).
2. Dao, M., Lu, L., Shen, Y.F., and Suresh, S.: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54(20), 54215432 (2006).
3. Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 51595172 (2003).
4. May, J., Höppel, H.W., and Göken, M.: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53(2), 189194 (2005).
5. Gianola, D.S., Warner, D.H., Molinari, J.F., and Hemker, K.J.: Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline al. Scr. Mater. 55(7), 649652 (2006).
6. Alaca, B.E., Toga, K.B., Akar, O., and Akin, T.: Strain-controlled bulge test. J. Mater. Res. 23(12), 32953302 (2008).
7. Emery, R.D. and Povirk, G.L.: Tensile behavior of free-standing gold films. Part I. coarse-grained films. Acta Mater. 51(7), 20672078 (2003).
8. Emery, R.D. and Povirk, G.L.: Tensile behavior of free-standing gold films. Part II. fine-grained films. Acta Mater. 51(7), 20792087 (2003).
9. Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J., and Peroulis, D.: Strain rate sensitivity of nanocrystalline au films at room temperature. Acta Mater. 58(14), 46744684 (2010).
10. Karanjgaokar, N., Chasiotis, I., Peroulis, D., and Jonnalagadda, K.: Strain rate and creep response of Au and Ni thin films. In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 4, 2009. (Society for Experimental Mechanics, Bethel, CT, 2009); pp. 23732381.
11. Wang, L. and Prorok, B.C.: Strain rate dependent behavior of nanocrystalline gold films. In 11th International Congress and Exhibition on Experimental and Applied Mechanics, 4, 2008. (Society for Experimental Mechanics, Bethel, CT, 2008); pp. 18541859.
12. Solonovich, I.I.: Creep mechanisms of condensed polycrystalline films of copper in the range 20-150 degree C. Phys. Met. Metallogr. 40(3), 158163 (1975).
13. Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26(11), 14211430 (2011).
14. Weertman, J.: Creep of polycrystalline aluminium as determined from strain rate tests. J. Mech. Phys. Solids 4(4), 230234 (1956).
15. Cieslar, M., Karimi, A., and Martin, J-L.: Plastic instabilities during biaxial testing of Al-Fe-Si foils. Mater. Sci. Forum 396402(2), 10791084 (2002).
16. Merle, B. and Göken, M.: Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests. Acta Mater. 59(4), 17721779 (2011).
17. Schweitzer, E.W. and Göken, M.: In situ bulge testing in an atomic force microscope: Microdeformation experiments of thin film membranes. J. Mater. Res. 22(10), 29022911 (2007).
18. Merle, B. and Göken, M.: Bulge fatigue testing of freestanding and supported gold films. J. Mater. Res. 29(2), 267276 (2014).
19. Vlassak, J.J. and Nix, W.D.: New bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 32423249 (1992).
20. Xiang, Y., Chen, X., and Vlassak, J.J.: Plane-strain bulge test for thin films. J. Mater. Res. 20(9), 23602370 (2005).
21. Merle, B., Schweitzer, E.W., and Göken, M.: Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations. Philos. Mag. 92(25–27), 31723187 (2012).
22. Cottrell, A.H.: Logarithmic and Andrade creep. Philos. Mag. Lett. 75(5), 301307 (1997).
23. Nabarro, F.R.N.: Theory of Crystal Dislocations (Dover publications, Mineola, NY, USA, 1987).
24. Freund, L.B.: Stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. 54(3), 553557 (1987).
25. Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20(11), 22172245 (1989).
26. Xiang, Y. and Vlassak, J.J.: Bauschinger effect in thin metal films. Scr. Mater. 53(2), 177182 (2005).
27. Göken, M., Höppel, H.W., Hausöl, T., Bach, J., Maier, V., Schmidt, C.W., and Amberger, D.: Grain refinement and deformation mechanisms in heterogeneous ultrafine-grained materials processed by accumulative roll bonding. In Proceedings of 33rd Risø Symposium on Materials Science: Nanometals—Status and Perspective, 2012. (Technical University of Denmark, Roskilde, Denmark, 2012); pp. 3148.
28. Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381(1–2), 7179 (2004).
29. Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps (Pergamon Press, Oxford, UK, 1982).
30. Meyers, M.A. and Chawla, K.K.: Mechanical Behavior of Materials (Cambridge University Press, Cambridge, UK, 2009).
31. Lüthy, H., White, R.A., and Sherby, O.D.: Grain boundary sliding and deformation mechanism maps. Mater. Sci. Eng. 39(2), 211216 (1979).
32. Van Swygenhoven, H. and Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter Mater. Phys. 64(22), 22410512241059 (2001).
33. Maier, V., Merle, B., Göken, M., and Durst, K.: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28(9), 11771188 (2013).
34. Hosford, W.F.: Mechanical Behavior of Materials (Cambridge University Press, Cambridge, UK, 2005).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed