Skip to main content
×
×
Home

Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells

  • Michael V. Lee (a1), Sonia R. Raga (a1), Yuichi Kato (a1), Matthew R. Leyden (a1), Luis K. Ono (a1), Shenghao Wang (a1) and Yabing Qi (a1)...
Abstract

Perovskite-based solar cells, typically CH3NH3PbI3, have reached power conversion efficiencies on par with single crystal silicon solar cells. Perovskite cells prepared with the most common perovskite solvent N,N-dimethylformamide (DMF) by different research groups exhibit disparate efficiencies and stability for nominally identical perovskite films. Although the differences can be related to processing conditions, a consistent physical cause for the differences has been lacking. Highly-sensitive time-of-flight secondary ion mass spectrometry (TOF-SIMS) reveals significant dimethylamine (DMA) included in perovskite films. TOF-SIMS and x-ray photoelectron spectroscopy results suggest DMA levels ranging from roughly 10–50%. Only the highest levels register as perovskite peak shifts in x-ray diffraction; lower levels are invisible. We propose that methylamine (MA) can react with DMF solvent by transamidation to produce dimethylamine (DMA), which then displaces some MA in perovskite crystals, see Fig. 1. Transamidation of DMF can be catalyzed by TiO2, Al2O3, water, or acid, but in perovskite films transamidation is inhibited by water.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail: Yabing.Qi@OIST.jp
References
Hide All
1. Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).
2. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).
3. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H-S., Hong, Z., You, J., Liu, Y., and Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).
4. National Renewable Energy Laboratory: Research Cell Efficiency Records (2014). Available at: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 7 Oct 2014).
5. Zhao, Y. and Zhu, K.: Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 5, 4175 (2014).
6. Zhao, Y. and Zhu, K.: Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655 (2016).
7. Snaith, H.J.: Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623 (2013).
8. Ito, S., Tanaka, S., Vahlman, H., Nishino, H., Manabe, K., and Lund, P.: Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural control and photoaging effects. ChemPhysChem 15, 1194 (2014).
9. Nie, W., Tsai, H., Asadpour, R., Blancon, J-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H-L., and Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015).
10. Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H-S., Wang, H-H., Liu, Y., Li, G., and Yang, Y.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622 (2014).
11. Burschka, J., Pellet, N., Moon, S-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).
12. Kim, J.H., Williams, S.T., Cho, N., Chueh, C-C., and Jen, A.K-Y.: Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015).
13. Sanchez, R.S., Gonzalez-Pedro, V., Lee, J-W., Park, N-G., Kang, Y.S., Mora-Sero, I., and Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357 (2014).
14. Leijtens, T., Eperon, G.E., Pathak, S., Abate, A., Lee, M.M., and Snaith, H.J.: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).
15. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 Photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919 (2014).
16. Kim, S. and Choi, W.: Kinetics and mechanisms of photocatalytic degradation of (CH3) n NH4-N+ (0 ≤ N ≤ 4) in TiO2 suspension: The role of OH radicals. Environ. Sci. Technol. 36, 2019 (2002).
17. Henderson, M.A.: A surface science perspective on photocatalysis. Surf. Sci. Rep. 66, 185 (2011).
18. Øpstad, C.L., Melø, T-B., Sliwka, H-R., and Partali, V.: Formation of DMSO and DMF radicals with minute amounts of base. Tetrahedron 65, 7616 (2009).
19. Bipp, H. and Kieczka, H.: Formamides. In Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000).
20. Niu, G., Li, W., Meng, F., Wang, L., Dong, H., and Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2013).
21. Lebleu, T., Kotsuki, H., Maddaluno, J., and Legros, J.: Formylation of amines through catalyst- and solvent-free transamidation reaction. Tetrahedron Lett. 55, 362 (2014).
22. Allen, C.L., Atkinson, B.N., and Williams, J.M.J.: Transamidation of primary amides with amines using hydroxylamine hydrochloride as an inorganic catalyst. Angew. Chem. Int. Ed. 51, 1383 (2012).
23. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).
24. Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic Cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).
25. Raga, S.R., Jung, M-C., Lee, M.V., Leyden, M.R., Kato, Y., and Qi, Y.B.: Influence of air annealing on high efficiency planar structure perovskite solar cells. Chem. Mater. 27, 1597 (2015).
26. Leyden, M.R., Ono, L.K., Raga, S.R., Kato, Y., Wang, S., and Qi, Y.B.: High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A 2, 18742 (2014).
27. Ono, L.K., Wang, S., Kato, Y., Raga, S.R., and Qi, Y.B.: Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 39893993, (2014).
28. Wang, S., Ono, L.K., Leyden, M.R., Kato, Y., Raga, S.R., Lee, M.V., and Qi, Y.B.: Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. J. Mater. Chem. A 3, 1463114641, (2015).
29. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D.: Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, Eden Prarie, MN, 1995).
30. Stein, S.E.: Mass spectra. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P.J. and Mallard, W.G., eds. (National Institute of Standards and Technology, Gaithersburg, 2016).
31. Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M., and White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013).
32. Christians, J.A., Miranda Herrera, P.A., and Kamat, P.V.: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015).
33. Wakamiya, A., Endo, M., Sasamori, T., Tokitoh, N., Ogomi, Y., Hayase, S., and Murata, Y.: Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem. Lett. 43, 711 (2014).
34. Vincent, B.R., Robertson, K.N., Cameron, T.S., and Knop, O.: Alkylammonium lead halides. Part 1. Isolated PbI6 4− ions in (CH3NH3)4PbI6·2H2O. Can. J. Chem. 65, 1042 (1987).
35. Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., and Xu, J.: Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460 (2015).
36. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., and Mosca, R.: MAPbI3−x Cl x mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013).
37. Unger, E.L., Bowring, A.R., Tassone, C.J., Pool, V.L., Gold-Parker, A., Cheacharoen, R., Stone, K.H., Hoke, E.T., Toney, M.F., and McGehee, M.D.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158 (2014).
38. You, J., (Michael) Yang, Y., Hong, Z., Song, T-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W-H., Li, G., and Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).
39. Cheng, Y-B., Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J., Bach, U., and Spiccia, L.: Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139 (2015).
40. Yu, H., Wang, F., Xie, F., Li, W., Chen, J., and Zhao, N.: The role of chlorine in the formation process of “CH3NH3PbI3−x Cl x ” perovskite. Adv. Funct. Mater. 24, 7102 (2014).
41. Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).
42. Im, J-H., Chung, J., Kim, S-J., and Park, N-G.: Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 . Nanoscale Res. Lett. 7, 353 (2012).
43. Xie, F.X., Zhang, D., Su, H., Ren, X., Wong, K.S., Grätzel, M., and Choy, W.C.H.: Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 9, 639 (2015).
44. Onoda-Yamamuro, N., Matsuo, T., and Suga, H.: Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)†. J. Phys. Chem. Solids 51, 1383 (1990).
45. Wasylishen, R.E., Knop, O., and Macdonald, J.B.: Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581 (1985).
46. Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., and Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584 (2014).
47. Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).
48. Bass, K.K., McAnally, R.E., Zhou, S., Djurovich, P.I., Thompson, M., and Melot, B.: Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chem. Commun. 50, 15819 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Lee supplementary material
Lee supplementary material 1

 PDF (2.7 MB)
2.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed