Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 16
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ku, Se Jin Jo, Gyeong Cheon Bak, Chang Hong Kim, Su Min Shin, Yu Ri Kim, Kwang Ho Kwon, Se Hun and Kim, Jin-Baek 2013. Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition. Nanotechnology, Vol. 24, Issue. 8, p. 085301.

    Munz, Martin Langridge, Mark T. Devarepally, Kishore K. Cox, David C. Patel, Pravin Martin, Nicholas A. Vargha, Gergely Stolojan, Vlad White, Sam and Curry, Richard J. 2013. Facile Synthesis of Titania Nanowires via a Hot Filament Method and Conductometric Measurement of Their Response to Hydrogen Sulfide Gas. ACS Applied Materials & Interfaces, Vol. 5, Issue. 4, p. 1197.

    Perego, Daniele Franz, Silvia Bestetti, Massimiliano Cattaneo, Laura Brivio, Stefano Tallarida, Grazia and Spiga, Sabina 2013. Engineered fabrication of ordered arrays of Au–NiO–Au nanowires. Nanotechnology, Vol. 24, Issue. 4, p. 045302.

    Ramgir, Niranjan Datta, Niyanta Kaur, Manmeet Kailasaganapathi, S. Debnath, Anil K. Aswal, D.K. and Gupta, S.K. 2013. Metal oxide nanowires for chemiresistive gas sensors: Issues, challenges and prospects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 439, p. 101.

    Kao, Wei-Lun Chang, Hsun-Yun Yen, Guo-Ji Kuo, Ding-Yuan You, Yun-Wen Huang, Chih-Chieh Kuo, Yu-Ting Lin, Jiun-Hao and Shyue, Jing-Jong 2012. Adsorption behavior of plasmid DNA on binary self-assembled monolayers modified gold substrates. Journal of Colloid and Interface Science, Vol. 382, Issue. 1, p. 97.

    Lo, Kang-Jung Liao, Hua-Yang Cheng, Hsiu-Wei Lin, Wei-Chun Yu, Bang-Ying Shyue, Jing-Jong and Chang, Che-Chen 2011. Polyol synthesis of polycrystalline cuprous oxide nanoribbons and their growth chemistry. Journal of Nanoparticle Research, Vol. 13, Issue. 2, p. 669.

    Sosa, Norma E. Chen, Christopher Liu, Jun Marks, Tobin J. and Hersam, Mark C. 2011. Large-scale, nonsubtractive patterning of transparent conducting oxides by ion bombardment. Applied Physics Letters, Vol. 99, Issue. 2, p. 022110.

    Herderick, Edward D Polomoff, Nicholas A Huey, Bryan D and Padture, Nitin P 2010. Chemically synthesized metal–oxide–metal segmented nanowires with high ferroelectric response. Nanotechnology, Vol. 21, Issue. 33, p. 335601.

    Ramgir, Niranjan S. Yang, Yang and Zacharias, Margit 2010. Nanowire-Based Sensors. Small, Vol. 6, Issue. 16, p. 1705.

    Herderick, Edward D. Reddy, Kongara M. Sample, Rachel N. Draskovic, Thomas I. and Padture, Nitin P. 2009. Bipolar resistive switching in individual Au–NiO–Au segmented nanowires. Applied Physics Letters, Vol. 95, Issue. 20, p. 203505.

    Ma, B. Goh, G.K.L. Zhang, T.S. and Ma, J. 2009. Hierarchically structured anatase nanotubes and membranes. Microporous and Mesoporous Materials, Vol. 124, Issue. 1-3, p. 162.

    Tan, Lee Kheng Chong, Maria A. S. and Gao, Han 2008. Free-Standing Porous Anodic Alumina Templates for Atomic Layer Deposition of Highly Ordered TiO2Nanotube Arrays on Various Substrates. The Journal of Physical Chemistry C, Vol. 112, Issue. 1, p. 69.

    Tresback, Jason S. and Padture, Nitin P. 2008. Low-temperature gas sensing in individual metal–oxide–metal heterojunction nanowires. Journal of Materials Research, Vol. 23, Issue. 08, p. 2047.

    Cochran, Rebecca E. Shyue, Jing-Jong and Padture, Nitin P. 2007. Template-based, near-ambient synthesis of crystalline metal-oxide nanotubes, nanowires and coaxial nanotubes. Acta Materialia, Vol. 55, Issue. 9, p. 3007.

    Herderick, Edward D Tresback, Jason S Vasiliev, Alexander L and Padture, Nitin P 2007. Template-directed synthesis, characterization and electrical properties of Au–TiO2–Au heterojunction nanowires. Nanotechnology, Vol. 18, Issue. 15, p. 155204.

    Tresback, J.S. Vasiliev, A.L. Padture, N.P. Si-Young Park, and Berger, P.R. 2007. Characterization and Electrical Properties of Individual Au–NiO–Au Heterojunction Nanowires. IEEE Transactions on Nanotechnology, Vol. 6, Issue. 6, p. 676.


Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions

  • Jing-Jong Shyue (a1), Rebecca E. Cochran (a1) and Nitin P. Padture (a1)
  • DOI:
  • Published online: 03 March 2011

A template-based, electroless wet-chemical method for synthesis of nanotubes and nanowires of nanocrystalline anatase titanium oxide (titania) at 45 °C is reported. Single-nanowire electrical property measurements reveal low dc resistivities (7–21 × 10−4 Ω cm) in these titania nanowires. In the presence of 1000 parts per million of CO gas at 100 °C, the resistivity is found to increase reversibly, indicating low-temperature gas-sensing capability in these titania nanowires. Thin films of nanocrystalline anatase titania, deposited using a similar wet-chemical method, also have low room-temperature dc resistivities (6–8 × 10−3 Ω cm), and they are transparent to visible light. Nanostructure-properties relations, together with possible electrical conduction, optical absorption, and gas-sensing mechanisms, are discussed. The ability to fashion transparent-conducting and gas-sensing nanocrystalline anatase titania into nanotubes/nanowires and thin films at near-ambient conditions could open a wider field of applications for titania, including nanoelectronics, chemical sensing, solar cells, large-area windows and displays, invisible security circuits, and incorporation of biomolecules and temperature-sensitive moieties.

Corresponding author
b) Address all correspondence to this author. e-mail: This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs. org/jmr_policy
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2.R. Asahi , T. Morikawa , T. Ohwaki , K. Aoki , Y. Taga : Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

3.M. Grätzel : Photoelectrochemical cells. Nature 414, 338 (2001).

4.C.O. Park , S.A. Akbar : Ceramics for chemical sensing. J. Mater. Sci. 38, 4611 (2003).

5.O.K. Varghese , D. Gong , M. Paulose , K.G. Ong , E.C. Dickey , C.A. Grimes : Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).

6.A. Hagfeldt , N. Vlachopoulos , M. Grätzel : Fast electrochromic switching with nanocrystalline oxide semiconductor films. J. Electrochem. Soc. 141 L82 (1994).

7.E. Topoglidis , A.E.G. Cass , B. O’Regan , J.R. Durrant : Immobilisation and biochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 517, 20 (2001).

8.J. Li , G.W. Hastings Oxide ceramics: Inert ceramic materials in medicine and dentistry, in Handbook of Biomaterials Properties, edited by J. Black , G.W. Hastings (Chapman & Hall, London, 1998), p. 340.

11.P. Knauth , H.L. Tuller : Electrical and defect thermodynamic properties of nanocrystalline titanium oxide. J. Appl. Phys. 85, 897 (1999).

12.R. v. d. Krol , H.L. Tuller : Electroceramics: The role of interfaces. Solid State Ionics 150, 167 (2002).

13.S.R. Kurtz , R.G. Gordon : Chemical vapor deposition of doped TiO2 thin films. Thin Solid Films 147, 167 (1987).

14.Z.L. Wang : Nanowires and Nanobelts: Materials, Properties and Devices (Kluwer Academic Publishers, New York, 2003).

15.C.M. Lieber : Nanoscale science and technology: Building big future from small things. MRS Bull. 28, 486 (2003).

16.Y. Xia , P. Yang , Y. Sun , Y. Wu , B. Mayers , B. Gates , Y. Yin , F. Kim , H. Yan : One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).

17.A. Kolmakov , M. Moskovits : Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Sci. 34, 151 (2004).

18.J.S. Tresback , A.L. Vasiliev , N.P. Padture : Engineered metal-oxide-metal heterojunction nanowires. J. Mater. Res. 20, 2613 (2005).

20.T. Kasuga , M. Hiramatsu , A. Hoson , T. Sekino , K. Niihara : Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

21.Z.Y. Yuan , B.L. Su : Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf., A 241, 173 (2004).

22.H. Imai , Y. Takei , K. Shimizu , M. Matsuda , H. Hirashima : Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 (1999).

23.J.C. Hulteen , C.R. Martin : A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).

24.A. Michailowski , D. AlMawlawi , G. Cheng , M. Moskovits : Highly regular anatase nanotuble arrays fabricated in porous anodic template. Chem. Phys. Lett. 349, 1 (2001).

25.Z. Miao , D.S. Xu , J.H. Ouyang , G.L. Guo , X.S. Zhao , Y.Q. Tang : Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).

26.S.L. Limmer , G.Z. Cao : Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 15, 427 (2003).

27.X.Y. Zhang , B.D. Yao , L.X. Zhao , C.H. Liang , L.D. Zhang , Y.Q. Mao : Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. J. Electrochem. Soc. 148 G398 (2001).

28.Y. Lei , L.D. Zhang , J.C. Fan : Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001).

30.S.K. Pradhan , P.J. Reucroft , F.Q. Yang , A. Dozier : Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).

32.H. Lin , H. Kozuka , T. Yoko : Electrical properties of transparent doped oxide films. J. Sol-Gel Sci. Technol. 19, 529 (2000).

33.Y. Furubayashi , T. Hitosugi , Y. Yamamoto , K. Inaba , G. Kinoda , Y. Hirose , T. Shimada , T. Hasegawa : A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).

34.T. Hitosugi , Y. Furubayashi , A. Ueda , K. Itabashi , K. Inaba , Y. Hirose , G. Kinoda , Y. Yamamoto , T. Shimada , T. Hasegawa : Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn. J. Appl. Phys. 44 L1063 (2005).

35.R.G. Gordon : Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000).

36.K. Ellmer : Resistivity of polycrystalline zinc oxide films: Current status and physical limits. J. Phys. D: Appl. Phys. 34, 3097 (2001).

37.C.G. Granqvist , A. Hultaker : Transparent and conducting ITO films: New developments and applications. Thin Solid Films 411, 1 (2002).

38.Y. Masuda , T. Sugiyama , W.S. Seo , K. Koumoto : Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution. Chem. Mater. 15, 2469 (2003).

39.A. Ishimaru : Wave Propagation and Scattering in Random Media (John Wiley & Sons, Inc., New York, 1999).

40.V. Gopal , V.R. Radmilovic , C. Daraio , S. Jin , P.D. Yang , E.A. Stach : Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004).

43.H. Kishimoto , K. Takahama , N. Hashimoto , Y. Aoi , S. Deki : Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem. 8, 2019 (1998).

44.E. Comini , G. Faglia , G. Sberveglieria , Z. Pan , Z.L. Wang : Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

45.Q. Wan , Q.H.L. Qh , Y.J. Chen , T.H. Wang , X.L. He , J.P. Li , C.L. Lin : Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 (2004).

46.A. Kolmakov , Y. Zhang , G. Cheng , M. Moskovits : Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).

47.C. Li , D. Zhang , X. Liu , S. Han , T. Tang , J. Han , C. Zhou : In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613 (2003).

48.C. Yu , Q. Hao , S. Saha , L. Shi , X.K. Kong , Z.L. Wang : Integration of metal oxide nanobelts with microsystems for nerve detection. Appl. Phys. Lett. 86, 63101 (2005).

49.Z.Y. Fan , J.G. Lu : Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 86, 123510 (2005).

50.O.K. Varghese , G.K. Mor , C.A. Grimes , M. Paulose , N. Mukherjee : A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 4, 733 (2004).

51.M. Jobin , M. Taborelli , P. Descouts : Structural characterization of oxidized titanium surfaces. J. Appl. Phys. 77, 5149 (1995).

52.C. Viornery , Y. Chevolot , D. Leonard , B.O. Aronsson , P. Pechy , H.J. Mathieu , P. Descouts , M. Grätzel : Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir 18, 2582 (2002).

53.K. Cai , M. Muller , J. Bosset , A. Rechtenbach , K.D. Jandt : Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Appl. Surf. Sci. 250, 252 (2005).

54.A. Razgon , C.N. Sukenik : Ceramic coatings for fiber matrix composites: Titania thin film on bismaleimide-glass fiber composites. J. Mater. Res. 20, 2544 (2005).

55.T.P. Niesen , M.R. DeGuire : Review: Deposition of ceramic thin films at low temperatures from aqueous solutions. J. Electroceram. 6, 169 (2001).

56.J. Singh , K. Shimakawa : Advances in Amorphous Semiconductors (CRC Press, Boca Raton, FL, 2003).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *