Hostname: page-component-6b989bf9dc-jks4b Total loading time: 0 Render date: 2024-04-15T05:07:07.979Z Has data issue: false hasContentIssue false

Deep-sea ostracods from the South Atlantic sector of the Southern Ocean during the last 370,000 years

Published online by Cambridge University Press:  14 July 2015

Moriaki Yasuhara
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington, DC 20013–7012,
Thomas M. Cronin
U.S. Geological Survey, 926A National Center, Reston, Virginia 20192,
Gene Hunt
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington, DC 20013–7012, , and
David A. Hodell
Godwin Laboratory for Paleoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom,


We report changes of deep-sea ostracod fauna during the last 370,000 yr from the Ocean Drilling Program (ODP) Hole 704A in the South Atlantic sector of the Southern Ocean. The results show that faunal changes are coincident with glacial/interglacial-scale deep-water circulation changes, even though our dataset is relatively small and the waters are barren of ostracods until mid-MIS (Marine Isotope Stage) 5. Krithe and Poseidonamicus were dominant during the Holocene interglacial period and the latter part of MIS 5, when this site was under the influence of North Atlantic Deep Water (NADW). Conversely, Henryhowella and Legitimocythere were dominant during glacial periods, when this site was in the path of Circumpolar Deep Water (CPDW). Three new species (Aversovalva brandaoae, Poseidonamicus hisayoae, and Krithe mazziniae) are described herein. This is the first report of Quaternary glacial/interglacial scale deep-sea ostracod faunal changes in the Southern and South Atlantic Oceans, a key region for understanding Quaternary climate and deep-water circulation, although the paucity of Quaternary ostracods in this region necessitates further research.

Research Article
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alvarez Zarikian, C. A., Stepanova, A. Y., and Grützner, J. 2009. Glacial–interglacial variability in deep sea ostracod assemblage composition at IODP Site U1314 in the subpolar North Atlantic. Marine Geology, 258:6987.CrossRefGoogle Scholar
Athersuch, J. 1979. On Pelecocythere sylvesterbradleyi Athersuch gen. et sp. nov. Stereo-Atlas of Ostracod Shells, 6:1320.Google Scholar
Ayress, M. A. 1993. On Trachyleberis bathymarina Ayress sp. nov. Stereo-Atlas of Ostracod Shells, 20:105108.Google Scholar
Ayress, M. A., de Deckker, P., and Coles, G. P. 2004. A taxonomic and distributional survey of marine benthonic Ostracoda off Kerguelen and Heard Islands, South Indian Ocean. Journal of Micropalaeontology, 23:1538.Google Scholar
Ayress, M. A., Neil, H., Passlow, V., and Swanson, K. 1997. Benthonic ostracods and deep watermasses: a qualitative comparison of Southwest Pacific, Southern and Atlantic Oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 131:287302.Google Scholar
Baird, W. 1850. The Natural History of the British Entomostraca. Ray Society, London, 364 p.Google Scholar
Benson, R. H. 1972. The Bradleya problem, with descriptions of two new psychrospheric ostracode genera, Agrenocythere and Poseidonamicus (Ostracoda: Crustacea). Smithsonian Contributions to Paleobiology, 12:1138.Google Scholar
Benson, R. H. 1990. Ostracoda and the discovery of global Cainozoic paleoceanographical events, p. 4158. In Whatley, R. C. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman & Hall, London.Google Scholar
Benson, R. H., Chapman, R. E., and Deck, L. T. 1984. Paleoceanographic events and deep-sea ostracodes. Science, 224:13341336.CrossRefGoogle ScholarPubMed
Bold, W. A. van den. 1946 [reprinted in 1970 by Antiquriaat Junk, Lochem]. Contribution to the Study of Ostracoda with Special Reference to the Tertiary and Cretaceous Microfauna of the Caribbean Region [Proefschrift, Rijks-Universiteit te Utrecht]. J. H. De Bussy, Amsterdam, 167 p.Google Scholar
Bold, W. A. van den. 1958. Ostracoda of the Brasso Formation of Trinidad. Micropaleontology, 4:391418.Google Scholar
Brady, G. S. 1866. On new or imperfectly known species of marine Ostracoda. Transactions of the Zoological Society of London, 5:359393.Google Scholar
Brady, G. S. 1880. Report on the Ostracoda dredged by H.M.S. Challenger, during the years 1873–1876. Report on the Scientific Results of the Exploring Voyage of H.M.S. Challenger, Zoology, 1:1184.Google Scholar
Brady, G. S. 1898. On new or imperfectly-known species of Ostracoda, chiefly from New Zealand. Transactions of the Zoological Society of London, 14:429452.Google Scholar
Brady, G. S., Crosskey, H. W., and Robertson, D. 1874. A monograph of the post-Tertiary Entomostraca of Scotland including species from England and Ireland. Annual Volumes (Monographs) of the Palaeontographical Society, London, 28:1232.Google Scholar
Brandt, A., de Broyer, C., de Mesel, I., Ellingsen, K. E., Gooday, A. J., Hilbig, B., Linse, K., Thomson, M. R. A., and Tyler, P. A. 2007b. The biodiversity of the deep Southern Ocean benthos. Philosophical Transactions of the Royal Society B, Biological Sciences, 362:3966.CrossRefGoogle ScholarPubMed
Brandt, A., Gooday, A. J., Brandão, S. N., Brix, S., Brökeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., de Mesel, I., Diaz, R. J., Gillan, D. C., Ebbe, B., Howe, J. A., Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., Raupach, M., and Vanreusel, A. 2007a. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 447:307311.Google Scholar
Brandão, S. N. 2008a. First Record of a living Platycopida (Crustacea, Ostracoda) from Antarctic waters and a Discussion on Cytherella serratula (Brady, 1880). Zootaxa, 1866:349372.Google Scholar
Brandão, S. N. 2008b. New species of Bairdioidea (Crustacea, Ostracoda) from the Southern Ocean and discussions on Bairdoppilata simplex (Brady, 1880)?, Bairdoppilata labiata (Müller, 1908) and Bythopussella aculeata (Müller, 1908). Zootaxa, 1866:373452.Google Scholar
Bubikyan, S. A. 1958. Ostracoda from Paleogene deposits of the Erevan Basin. Izvestiya Akademii Nuak Armyanskoy SSR, Seriya Geologicheskii i Geograficheskii Nauk, 11:316. (in Russian) Google Scholar
Ciesielski, P. F., Kristoffersen, Y., Clement, B., Blangy, J.-P., Bourrouilh, R., Crux, J. A., Fenner, J. M., Froelich, P. N., Hailwood, E., Hodell, D., Katz, M. E., Ling, H. Y., Mienert, J., Muller, D., Mwenifumbo, C. J., Nobes, D. C., Nocchi, M., Warnke, D. A., and Westall, F. 1988. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 114. Ocean Drilling Program, College Station, Texas.Google Scholar
Clarke, A., Aronson, R. B., Crame, J. A., Gili, J.-M., and Blake, D. B. 2004. Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarctic Science, 16:559568.Google Scholar
Clarke, A. and Johnston, N. M. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology: an Annual Review, 41:47114.Google Scholar
Coles, G. P. and Whatley, R. C. 1989. New Palaeocene to Miocene genera and species of Ostracoda from DSDP sites in the North Atlantic. Revista Española de Micropaleontología, 21:81124.Google Scholar
Coles, G. P., Whatley, R. C., and Moguilevsky, A. 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology, 37:71120.Google Scholar
Cronin, T. M., DeMartino, D. M., Dwyer, G. S., and Rodriguez-Lazaro, J. 1999. Deep-sea ostracode species diversity: response to late Quaternary climate change. Marine Micropaleontology, 37:231249.CrossRefGoogle Scholar
Cronin, T. M., Dowsett, H. J., Dwyer, G. S., Baker, P. A., and Chandler, M. A. 2005. Mid-Pliocene deep-sea bottom-water temperatures based on ostracode Mg/Ca ratios. Marine Micropaleontology, 54:249261.Google Scholar
Cronin, T. M., Holtz, T. R. Jr., Stein, R., Spielhagen, R., Futterer, D., and Wollenburg, J. 1995. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean. Paleoceanography, 10:259281.Google Scholar
Cronin, T. M. and Raymo, M. E. 1997. Orbital forcing of deep-sea benthic species diversity. Nature, 385:624627.Google Scholar
Cronin, T. M., Raymo, M. E., and Kyle, K. P. 1996. Pliocene (3.2-2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean. Geology, 24:695698.2.3.CO;2>CrossRefGoogle Scholar
Dall'Antonia, B. and Bossio, A. 2001. Middle Miocene ostracods from the Salentine Peninsula. Rivista Italiana di Paleontologia e Stratigrafia, 107:395424.Google Scholar
Didié, C. and Bauch, H. A. 2000. Species composition and glacialinterglacial variations in the ostracode fauna of the northeast Atlantic during the past 200,000 yr. Marine Micropaleontology, 40:105129.Google Scholar
Didié, C., Bauch, H. A., and Helmke, J. P. 2002. Late Quaternary deep-sea ostracodes in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 184:195212.CrossRefGoogle Scholar
Dingle, R. V. and Lord, A. R. 1990. Benthic ostracods and deep water-masses in the Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 80:213235.Google Scholar
Dingle, R. V., Lord, A. R., and Boomer, I. D. 1990. Deep-water Quaternary Ostracoda from the continental margin off south-western Africa (SE Atlantic Ocean). Annals of the South African Museum, 99:245366.Google Scholar
Foster, D. W. and Kaesler, R. L. 1988. On Bradleya normani (Brady). Stereo-Atlas of Ostracod Shells, 15:3336.Google Scholar
Gründel, J. 1967. Zur Grossgliederung der Ordnung Podocopida G. W. Müller, 1894 (Ostracoda). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 6:321332.Google Scholar
Hazel, J. E. 1967. Classification and distribution of the recent Hemicytheridae and Trachyleberididae (Ostracoda) off northeastern North America. U. S. Geological Survey Professional Paper, 564:149.Google Scholar
Hodell, D. A. 1993. Late Pleistocene paleoceanography of the South Atlantic sector of the Southern Ocean: Ocean Drilling Program Hole 704A. Paleoceanography, 8:4767.CrossRefGoogle Scholar
Hodell, D. A., Charles, C. D., and Ninnemann, U. S. 2000. Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450 kyr: implications for Marine Isotope Stage (MIS) 11. Global and Planetary Change, 24:726.Google Scholar
Hornibrook, N. B. 1952. Tertiary and recent marine Ostracoda of New Zealand–their origin, affinities and distribution. New Zealand Geological Survey, Paleontological Bulletin, 18:582.Google Scholar
Howard, W. R. and Prell, W. L. 1994. Late Quaternary CaCO3production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography, 9:453482.CrossRefGoogle Scholar
Hunt, G. 2007. Morphology, ontogeny, and phylogenetics of the genus Poseidonamicus (Ostracoda: Thaerocytherinae). Journal of Paleontology, 81:607631.Google Scholar
Jellinek, T. and Swanson, K. M. 2003. Report on the taxonomy, biogeography and phylogeny of mostly living benthic Ostracoda (Crustacea) from deep-sea samples (Intermediate Water depths) from the Challenger Plateau (Tasman Sea) and Campbell Plateau (Southern Ocean), New Zealand. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 558:1329.Google Scholar
Kaiser, S. and Barnes, D. K. A. 2008. Southern Ocean deep-sea biodiversity: sampling strategies and predicting responses to climate change. Climate Research, 37:165179.Google Scholar
Latreille, P. A. 1802. Genera Crustaceorum et Insectorum, Tomus I. Amand Koenig, Paris, 1, 303 p.Google Scholar
Lisiecki, L. E. and Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20:PA1003, doi:1010.1029/2004PA001071.Google Scholar
Mackensen, A., Rudolph, M., and Kuhn, G. 2001. Late Pleistocene deep-water circulation in the subantarctic eastern Atlantic. Global and Planetary Change, 30:197229.Google Scholar
Majoran, S. 1999. Palaeoenvironment of Maastrichtian ostracods from ODP Holes 1049B, 1050C and 1052E in the Western North Atlantic. Journal of Micropalaeontology, 18:125136.Google Scholar
Majoran, S. and Dingle, R. V. 2001b. Cenozoic deep-sea ostracods from southwestern South Atlantic (DSDP/ODP Sites 329, 513 and 699). Revista Española de Micropaleontología, 33:205215.Google Scholar
Majoran, S. and Dingle, R. V. 2001a. Palaeoceanographical changes recorded by Cenozoic deep-sea ostracod assemblages from the South Atlantic and the Southern Ocean (ODP Sites 1087 and 1088). Lethaia, 34:6383.Google Scholar
Majoran, S. and Dingle, R. V. 2002a. Cenozoic deep-sea ostracods from Maud Rise, Weddell Sea, Antarctica (ODP Site 689): a palaeoceanographical perspective. Geobios, 35:137152.Google Scholar
Majoran, S. and Dingle, R. V. 2002b. Faunal changes in Cenozoic deep-sea ostracod assemblages from the South Atlantic and the Southern Ocean and their palaeoceanographical implications. GFF, 124:1926.Google Scholar
Majoran, S., Kucera, M., and Widmark, J. G. V. 1998. Maastrichtian deep-sea ostracods from DSDP/ODP Sites 327, 356, 525, 527, 528, 529 and 698 in the South Atlantic. Revista Española de Micropaleontología, 30:5973.Google Scholar
Majoran, S. and Widmark, J. G. V. 1998. Response of deep-sea ostracod assemblages to Late Cretaceous palaeoceanographical changes: ODP Site 689 in the Southern Ocean. Cretaceous Research, 19:843872.Google Scholar
Majoran, S., Widmark, J. G. V., and Kucera, M. 1997. Palaeoecological preferences and geographical distribution of Late Maastrichtian deep-sea ostracods in the South Atlantic. Lethaia, 30:5364.Google Scholar
Mandelstam, M. I. 1958. New ostracode genera and species. Trudy VNIGRI, New Series, 115 (Microfauna SSSR, 9):232299. (in Russian) Google Scholar
Mazzini, I. 2005. Taxonomy, biogeography and ecology of Quaternary benthic Ostracoda (Crustacea) from circumpolar deep water of the Emerald Basin (Southern Ocean) and the S Tasman Rise (Tasman Sea). Senckenbergiana maritima, 35:1119.CrossRefGoogle Scholar
Müller, G. W. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel, 21:1404.Google Scholar
Puri, H. S. 1953. The ostracode genus Hemicythere and its allies. Journal of the Washington Academy of Sciences, 43:169179.Google Scholar
Puri, H. S. 1954. Contribution to the study of the Miocene of the Florida Panhandle, Pt. 3, Ostracoda. Geological Bulletin, State Board of Conservation, Florida Geological Survey, 36:217309.Google Scholar
Puri, H. S. 1957. Henryhowella, new name for Howella Puri, 1956. Journal of Paleontology, 31:982.Google Scholar
Puri, H. S. and Hulings, N. C. 1976. Designation of lectotypes of some ostracods from the Challenger Expedition. Bulletin of the British Museum (Natural History), Zoology, 29:251315.CrossRefGoogle Scholar
Sars, G. O. 1866 [Preprint, 1865]. Oversigt af Norges marine Ostracoder. Förhandlinger i Videnskabs-Selskabet i Christiania, 7:1130.Google Scholar
Schellenberg, S. A. 2007. Marine ostracods, p. 20462062. In Elias, S. A. (ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam.Google Scholar
Steineck, P. L., Dehler, D., Hoose, E. M., and McCalla, D. 1988. Oligocene to Quaternary ostracods of the central equatorial Pacific (Leg 85, DSDP-IPOD), p. 597617. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda: Its Fundamentals and Applications. Kodansha, Tokyo.Google Scholar
Steineck, P. L. and Thomas, E. 1996. The latest Paleocene crisis in the deep sea: Ostracode succession at Maud Rise, Southern Ocean. Geology, 24:583586.Google Scholar
Swanson, K. M. and van der Lingen, G. J. 1994. Podocopid ostracod dissolution – description of a new paleoenvironmental tool, with examples from the eastern Tasman Sea, p. 245260. In van der Lingen, G. J., Swanson, K. M., and Muir, R. J. (eds.), Evolution of the Tasman Sea Basin. Balkema, Rotterdam.Google Scholar
Swanson, K. and van der Lingen, G. 1997. Late Quaternary ostracod and planktonic foraminiferal dissolution signals from the eastern Tasman Sea – palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 131:303314.CrossRefGoogle Scholar
Sylvester-Bradley, P. C. 1948. The ostracode genus Cythereis . Journal of Paleontology, 22:792797.Google Scholar
Thomas, E. 1989. Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. Geological Society, London, Special Publications, 47:283296.Google Scholar
Thomas, E. 1990. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proceedings of the Ocean Drilling Program, Scientific Results, 113:571594.Google Scholar
Venz, K. A. and Hodell, D. A. 2002. New evidence for changes in Plio-Pleistocene deep water circulation from Southern Ocean ODP Leg 177 Site 1090. Palaeogeography, Palaeoclimatology, Palaeoecology, 182: 197220.CrossRefGoogle Scholar
Whatley, R. C., Chadwick, J., Coxill, D., and Toy, N. 1988. The ostracod family Cytheruridae from the Antarctic and South-West Atlantic. Revista Española de Micropaleontología, 20:171203.Google Scholar
Whatley, R. C. and Coles, G. P. 1987. The late Miocene to Quaternary Ostracoda of Leg 94, Deep Sea Drilling Project. Revista Española de Micropaleontología, 19:3397.Google Scholar
Whatley, R. C. and Coles, G. P. 1991. Global change and the biostratigraphy of North Atlantic Cainozoic deep water Ostracoda. Journal of Micropalaeontology, 9:119132.Google Scholar
Whatley, R. C., Downing, S. E., Kesler, K., and Harlow, C. J. 1986. The ostracode genus Poseidonamicus from the Cainozoic of the D.S.D.P. sites in the S.W. Pacific. Revista Española de Micropaleontologia, 18:387400.Google Scholar
Whatley, R. C., Moguilevsky, A., Ramos, M. I. F., and Coxill, D. J. 1998. Recent deep and shallow water Ostracoda from the Antarctic Peninsula and the Scotia Sea. Revista Española de Micropaleontologia, 30:111135.Google Scholar
Williams, D. F., Gribble, D., Healy-Williams, N., and Leschak, P. 1985. Dissolution and water-mass patterns in the southeast Indian Ocean, Pt. II: The Pleistocene record from Brunhes to Matuyama age sediments. Geological Society of America Bulletin, 96:176189.Google Scholar
Yasuhara, M. and Cronin, T. M. 2008. Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology, 89:S52S65.Google Scholar
Yasuhara, M., Cronin, T. M., deMenocal, P. B., Okahashi, H., and Linsley, B. K. 2008a. Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105:15561560.Google Scholar
Yasuhara, M., Cronin, T. M., and Martínez Arbizu, P. 2008b. Abyssal ostracods from the South and Equatorial Atlantic Ocean: Biological and paleoceanographic implications. Deep-Sea Research I, 55:490497.Google Scholar
Yasuhara, M., Kato, M., Ikeya, N., and Seto, K. 2007. Modern benthic ostracodes from Lützow-Holm Bay, East Antarctica: paleoceanographic, paleobiogeographic, and evolutionary significance. Micropaleontology, 53:469496.Google Scholar
Yasuhara, M., Okahashi, H., and Cronin, T. M. 2009. Taxonomy of Quaternary deep-sea ostracods from the western North Atlantic Ocean. Palaeontology 52:879931.Google Scholar