Skip to main content Accessibility help
×
Home

A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): a taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications

Published online by Cambridge University Press:  12 August 2016

Arden R. Bashforth
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 〈bashfortha@si.edu〉; 〈dimichel@si.edu〉
William A. DiMichele
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 〈bashfortha@si.edu〉; 〈dimichel@si.edu〉
Cortland F. Eble
Affiliation:
Kentucky Geological Survey, University of Kentucky, Lexington, KY 40560, USA 〈eble@uky.edu〉
W. John Nelson
Affiliation:
Illinois State Geological Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA 〈jnnelson@illinois.edu〉

Abstract

Taxonomic analysis is provided for a Middle Pennsylvanian macrofloral assemblage collected from clastic wetland deposits in Clay County, Indiana, on the eastern margin of the Illinois Basin. Adpressed plant fossils were recovered from four distinct beds in the lowermost Staunton Formation, positioned above the Minshall Coal (uppermost Brazil Formation), part of a succession deposited near the Atokan-Desmoinesian boundary. The assemblage of 22 fossil-taxa is dominated by pteridosperms (including Neuropteris flexuosa, Macroneuropteris scheuchzeri, Alethopteris densinervosa, Neuropteris ovata, Eusphenopteris neuropteroides, and Neuropteris missouriensis) with lesser cordaitaleans (Cordaites spp. indet.) and sphenopsids (particularly Sphenophyllum cuneifolium). Lycopsids are uncommon, and ferns are rare. In contrast, the microfloral assemblage from the Minshall Coal and overlying clastic units is dominated by lycopsid and tree fern spores. Comparisons with established biozonation schemes yield different ages depending on the regional biostratigraphic framework used: (1) latest Bolsovian (Radiizonates difformis Biozone, American microfloras); (2) latest Bolsovian or earliest Asturian (‘Neuropteris’ rarinervis Biozone, Appalachian Basin macrofloras); or (3) earliest Asturian (Linopteris obliqua Biozone, European macrofloras). The placement and correlation of the Bolsovian-Asturian and Atokan-Desmoinesian boundaries, which have traditionally been equated by palynology, are evaluated in the context of this discordance. Several revised stratigraphic scenarios are proposed for this interval in the Illinois Basin, which is being increasingly recognized as a time of significant environmental change throughout Euramerica. Homotaxial comparisons with European macrofloral assemblages indicate that, of the 18 biological taxa recorded, between 14 and 17 (78–94%) also are common in coeval wetland deposits in Europe. The similarities exemplify the spatial conservatism and low diversity of wetland plant communities over vast areas of tropical Euramerica, a manifestation of the intrinsically stressful conditions that characterize such habitats, and indicates that neither the Laurentian Shield nor the Appalachian-Variscan Mountains were an insurmountable barrier to plant dispersal during the Middle Pennsylvanian.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abbott, M.L., 1958, The American species of Asterophyllites, Annularia, and Sphenophyllum : Bulletins of American Paleontology, v. 38, p. 289390.Google Scholar
Algeo, T.J., and Heckel, P.H., 2008, The Late Pennsylvanian Midcontinent Sea of North America: a review: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 205221.CrossRefGoogle Scholar
Allen, K.C., 1961, Lepidostrobophyllum fimbriatum (Kidston 1883) from the Drybrook Sandstone (Lower Carboniferous): Geological Magazine, v. 98, p. 225229.CrossRefGoogle Scholar
Archer, A.W., Feldman, H.R., Kvale, E.P., and Lanier, W.P., 1994, Comparison of drier- to wetter-interval estuarine roof facies in the Eastern and Western Interior coal basins, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 106, p. 171185.CrossRefGoogle Scholar
Archer, A.W., Elrick, S., Nelson, W.J., and DiMichele, W.A., 2016, Cataclysmic burial of Pennsylvanian Period coal swamps in the Illinois Basin: Hypertidal sedimentation during Gondwanan glacial melt-water pulses, in Tessier, B., and Reynaud, J.-Y., eds., Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference: International Association of Sedimentologists Special Publication 47, p. 217–231.CrossRefGoogle Scholar
Arnold, C.A., 1934, A preliminary study of the fossil flora of the Michigan Coal Basin: Contributions from the Museum of Paleontology, University of Michigan, v. 4, p. 177204.Google Scholar
Arnold, C.A., 1949, Fossil flora of the Michigan Coal Basin: Contributions from the Museum of Paleontology, University of Michigan, v. 7, p. 131269.Google Scholar
Barrick, J.E., Lambert, L.L., Heckel, P.H., Rosscoe, S.J., and Boardman, D.R., 2013, Midcontinent Pennsylvanian conodont zonation: Stratigraphy, v. 10, p. 5572.Google Scholar
Barthel, M., 1976, Die Rotliegendflora Sachsens: Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, v. 24, p. 1190. pls. 1–97.Google Scholar
Barthel, M., 1997, Epidermal structures of sphenophylls: Review of Palaeobotany and Palynology, v. 95, p. 115127.CrossRefGoogle Scholar
Barthel, M., 2000, Annularia stellata oder Annularia spinulosa?: Veröffentlichungen des Naturkundemuseums Erfurt, v. 19, p. 3742.Google Scholar
Barthel, M., 2004, Die Rotliegendflora des Thüringer Waldes. Teil 2: Calamiten und Lepidophyten: Veröffentlichungen Naturhistorisches Museum Schloß Bertholdsburg Schleusingen, v. 19, p. 1948.Google Scholar
Bartling, F.G., 1830, Ordines Naturales Plantarum Eorumque Characteres et Affinitates Adjecta Generum Enumeratione: Göttingen, Sumptibus Dieterichianis, 498 p.Google Scholar
Bashforth, A.R., 2005, Late Carboniferous (Bolsovian) macroflora from the Barachois Group, Bay St. George Basin, southwestern Newfoundland, Canada: Palaeontographica Canadiana, v. 24, p. 1123.Google Scholar
Bashforth, A.R., Falcon-Lang, H.J., and Gibling, M.R., 2010, Vegetation heterogeneity on a Late Pennsylvanian braided-river plain draining the Variscan Mountains, La Magdalena Coalfield, northwestern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 292, p. 367390.CrossRefGoogle Scholar
Bashforth, A.R., Drábková, J., Opluštil, S., Gibling, M.R., and Falcon-Lang, H.J., 2011, Landscape gradients and patchiness in riparian vegetation on a Middle Pennsylvanian braided-river plain prone to flood disturbance (Nýřany Member, Central and Western Bohemian Basin, Czech Republic): Review of Palaeobotany and Palynology, v. 163, p. 153189.CrossRefGoogle Scholar
Basson, P.W., 1968, The fossil flora of the Drywood Formation of southwestern Missouri: University of Missouri Studies, v. 44, p. 1170.Google Scholar
Batenburg, L.H., 1977, The Sphenophyllum species in the Carboniferous flora of Holz (Westphalian D, Saar Basin, Germany): Review of Palaeobotany and Palynology, v. 24, p. 6999.CrossRefGoogle Scholar
Bell, W.A., 1938, Fossil flora of Sydney Coalfield, Nova Scotia: Geological Survey of Canada Memoir, v. 215, p. 1334.Google Scholar
Bell, W.A., 1940, The Pictou Coalfield, Nova Scotia: Geological Survey of Canada Memoir, v. 225, p. 1161.Google Scholar
Bell, W.A., 1944, Carboniferous rocks and fossil floras of northern Nova Scotia: Geological Survey of Canada Memoir, v. 238, p. 1277.Google Scholar
Bell, W.A., 1962, Flora of Pennsylvanian Pictou Group of New Brunswick: Geological Survey of Canada Bulletin, v. 87, p. 171, pls. 1–56.Google Scholar
Bertier, P., Swennen, R., Lagrou, D., Laenen, B., and Kemps, R., 2008, Palaeo-climate controlled diagenesis of the Westphalian C & D fluvial sandstones in the Campine Basin (north-east Belgium): Sedimentology, v. 55, p. 13751417.CrossRefGoogle Scholar
Bertrand, P., 1930, Bassin houiller de la Sarre et de la Lorraine. I. Flore fossile. Part 1. Neuroptéridées: Études des Gîtes Minéraux de la France, p. 158, pls. 1–30.Google Scholar
Bertrand, P., 1932, Bassin houiller de la Sarre et de la Lorraine. I. Flore fossile. Part 2. Alethoptéridées: Études des Gîtes Minéraux de la France, p. 61107, pls. 31–60.Google Scholar
Blake, B.M. Jr., and Gillespie, W.H., 2011, The enigmatic Dunkard macroflora, in Harper, J.M., ed., Geology of the Pennsylvanian–Permian in the Dunkard Basin: Guidebook, 76th Annual Field Conference of Pennsylvania Geologists, Middletown, p. 103–143.Google Scholar
Blake, B.M. Jr., Cross, A.T., Eble, C.F., Gillespie, W.H., and Pfefferkorn, H.W., 2002, Selected plant megafossils from the Carboniferous of the Appalachian region, United States: geographic and stratigraphic distribution, in Hills, L.V., Henderson, C.M., and Bamber, E.W., eds., Carboniferous and Permian of the World: Canadian Society of Petroleum Geologists Memoir 19, p. 259335.Google Scholar
Blakey, R., 2013, North America key time-slices paleotectonic and sedimentation maps: Carboniferous-Pennsylvanian: cpgeosystems.com/images/penn-facies.jpg (accessed August 2014).Google Scholar
Bode, H., 1958, Die floristichse Gliederung des Oberkarbons der Vereinigten Staaten von Nordamerika: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 110, p. 217259.Google Scholar
Boersma, M., 1972, The Heterogeneity of the Form Genus Mariopteris Zeiller: a Comparative Morphological Study with Special Reference to the Frond Composition of West-European Species: Utrecht, Elinkwijk, 172 p., pls. 1–43.Google Scholar
Boneham, R.F., 1974, Chieftain No. 20 flora (Middle Pennsylvanian) of Vigo County, Indiana: Proceedings of the Indiana Academy of Science, v. 84, p. 89113.Google Scholar
Boulay, N., 1876, Le Terraine Houiller du Nord de la France et ses végétaux fossiles [Ph.D. dissertation]: Caen, France, Académie de Caen, 74 p., pls. 1–4.Google Scholar
Brongniart, A., 1822, Sur la classification et la distribution des végétaux fossiles, et sur ceux des terrains de sédiment supérieur en particulier: Mémoires du Muséum d’Histoire Naturelle, v. 8, p. 203240, 297–348, pls. 1–6.Google Scholar
Brongniart, A., 1828a, Histoire des Végétaux Fossiles, ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe, vol. 1, part 2: Paris, G. Dufour, p. 81–136, pls. 9bis, 10, 12, 15, 19–27.Google Scholar
Brongniart, A., 1828b, Prodrome d’une Histoire des Végétaux Fossiles: Paris, F.G. Levrault, 223 p.Google Scholar
Brongniart, A., 1830, Histoire des Végétaux Fossiles, ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe: Paris, G. Dufour, vol. 1, part 4, p. 169–208, pls. 29, 42, 43, 46–49, 51, 52, 54–56, 61, 66.Google Scholar
Brongniart, A., 1831, Histoire des Végétaux Fossiles, ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe: Paris, G. Dufour, vol. 1, part 5, p. 209–248, pls. 50, 53, 57, 58, 61bis, 62, 64, 65, 67, 68, 70, 71, 73, 76.Google Scholar
Brongniart, A., 1833-34, Histoire des Végétaux Fossiles, ou Recherches Botaniques et Géologiques sur les Végétaux Renfermés dans les Diverses Couches du Globe: Paris, G. Dufour, vol. 1, parts 7–9, p. 265–336, pls. 82A, 83–114, 117, 118, 124, 127, 128, 130.Google Scholar
Buisine, M., 1961, Contribution à l’étude de la flore du terrain houiller. I. Flore fossile, Part 4. Les Aléthoptéridées du Nord de la France: Études géologiques pour l’Atlas de topographie souterraine, Service géologique des Houillères du Bassin du Nord et du Pas-de-Calais, p. 1–317, pls. 1–74.Google Scholar
Bunbury, C.J.F., 1847, On fossil plants from the coal formation of Cape Breton: Quarterly Journal of the Geological Society, v. 3, p. 423438.CrossRefGoogle Scholar
Butterworth, M.A., and Williams, R.W., 1958, The small spore floras of coals in the Limestone Coal Group and Upper Limestone Group of the Lower Carboniferous of Scotland: Transactions of the Royal Society of Edinburgh, v. 63, p. 353392.CrossRefGoogle Scholar
Calder, J.H., 1998, The Carboniferous evolution of Nova Scotia, in Blundell, D.J., and Scott, A.C., eds., Lyell: The Past is the Key to the Present: Geological Society of London Special Publications, v. 143, p. 261302.Google Scholar
Cambier, R., and Renier, A., 1912, Observations sur Cyclostigma macconochiei Kidston sp. et Omphalophloios anglicus Sternberg sp.: Mémoires de la Société Géologique de Belgique, v. 3, no. 2, p. 5688, pls. 6–11.Google Scholar
Canright, J.E., 1959, Fossil plants of Indiana: Indiana Geological Survey Report of Progress, v. 14, p. 145, pls. 1–5.Google Scholar
Cecil, C.B., 1990, Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks: Geology, v. 18, p. 533536.2.3.CO;2>CrossRefGoogle Scholar
Cecil, C.B., Stanton, R.W., Neuzil, S.G., Dulong, F.T., Ruppert, L.F., and Pierce, B.S., 1985, Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA): International Journal of Coal Geology, v. 5, p. 195230.CrossRefGoogle Scholar
Cecil, C.B., Dulong, F.T., West, R.R., Stamm, R., Wardlaw, B.A., and Edgar,.T., N, 2003, Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothems in North America, in Cecil, C.B., and Edgar, N.T., eds., Climate Controls on Stratigraphy: Society for Sedimentary Geology (SEPM) Special Publication, v. 77, p. 151182.CrossRefGoogle Scholar
Cecil, C.B., DiMichele, W.A., and Elrick, S.D., 2014, Middle and Late Pennsylvanian cyclothems, American Midcontinent: Ice-age environmental changes and terrestrial biotic dynamics: Comptes Rendus Geoscience, v. 346, p. 159168.CrossRefGoogle Scholar
Césari, S.N., and Hünicken, M., 2013, Heterophylly in Cordaites-like foliage from western Gondwana: Review of Palaeobotany and Palynology, v. 196, p. 918.CrossRefGoogle Scholar
Cleal, C.J., 1978, Floral biostratigraphy of the upper Silesian Pennant Measures of South Wales: Geological Journal, v. 13, p. 165194.CrossRefGoogle Scholar
Cleal, C.J., 1991, Carboniferous and Permian biostratigraphy, in Cleal, C.J., ed., Plant Fossils in Geological Investigation: The Palaeozoic: Chichester, Ellis Horwood, p. 182215.Google Scholar
Cleal, C.J., 1997, The palaeobotany of the upper Westphalian and Stephanian of southern Britain and its geological significance: Review of Palaeobotany and Palynology, v. 95, p. 227253.CrossRefGoogle Scholar
Cleal, C.J., 2002, Two new late Carboniferous Neuropteris species (Medullosales) from Saarland, Germany and their palaeobiogeographical significance: Botanical Journal of the Linnean Society, v. 139, p. 193205.CrossRefGoogle Scholar
Cleal, C.J., 2007, The Westphalian–Stephanian macrofloral record from the South Wales Coalfield, UK.: Geological Magazine, v. 144, p. 465486.CrossRefGoogle Scholar
Cleal, C.J., 2008a, Palaeofloristics of Middle Pennsylvanian lyginopteridaleans in Variscan Euramerica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 261, p. 114.CrossRefGoogle Scholar
Cleal, C.J., 2008b, Palaeofloristics of Middle Pennsylvanian medullosaleans in Variscan Euramerica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 164180.CrossRefGoogle Scholar
Cleal, C.J., and Shute, C.H., 1995, A synopsis of neuropteroid foliage from the Carboniferous and Lower Permian of Europe: Bulletin of the British Museum (Natural History), Geology Series, v. 51, p. 152.Google Scholar
Cleal, C.J., and Shute, C.H., 2003, Systematics of the Late Carboniferous medullosalean pteridosperm Laveineopteris and its associated Cyclopteris leaves: Palaeontology, v. 46, p. 353411.CrossRefGoogle Scholar
Cleal, C.J., and Shute, C.H., 2012, The systematic and palaeoecological value of foliage anatomy in Late Palaeozoic medullosalean seed-plants: Journal of Systematic Palaeontology, v. 10, p. 765800.CrossRefGoogle Scholar
Cleal, C.J., and Thomas, B.A., 1994, Plant Fossils of the British Coal Measures: Palaeontological Association Field Guide to Fossils, v. 6, p. 1222.Google Scholar
Cleal, C.J., and Thomas, B.A., 2010, Botanical nomenclature and plant fossils: Taxon, v. 59, p. 261268.Google Scholar
Cleal, C.J., and Zodrow, E.L., 1989, Epidermal structure of some medullosan Neuropteris foliage from the middle and upper Carboniferous of Canada and Germany: Palaeontology, v. 32, p. 837882.Google Scholar
Cleal, C.J., Shute, C.H., and Zodrow, E.L., 1990, A revised taxonomy for Palaeozoic neuropterid foliage: Taxon, v. 39, p. 486492.CrossRefGoogle Scholar
Cleal, C.J., Laveine, J.-P., and Shute, C.H., 1996, Architecture of the Upper Carboniferous pteridosperm frond Macroneuropteris macrophylla : Palaeontology, v. 39, p. 561582.Google Scholar
Cleal, C.J., Laveine, J.-P., and Shute, C.H., 1998, Further observations on the Upper Carboniferous pteridosperm frond Macroneuropteris macrophylla : Palaeontology, v. 41, p. 383386.Google Scholar
Cleal, C.J., Opluštil, S., Thomas, B.A., Tenchov, Y., Abbink, O.A., Bek, J., Dimitrova, T., Drábková, J., Hartkopf-Fröder, Ch., Van Hoof, T., Kędzior, A., Jarzembowski, E., Jasper, K., Libertín, M., McLean, D., Oliwkiewicz-Miklasinska, M., Pšenička, J., Ptak, B., Schneider, J.W., Schultka, S., Šimůnek, Z., Uhl, D., Waksmundzka, M.I., Van Waveren, I., and Zodrow, E.L., 2009, Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica: Netherlands Journal of Geosciences, v. 88, p. 181278.CrossRefGoogle Scholar
Cleal, C.J., Uhl, D., Cascales-Miñana, B., Thomas, B.A., Bashforth, A.R., King, S.C., and Zodrow, E.L., 2012, Plant biodiversity changes in Carboniferous tropical wetlands: Earth-Science Reviews, v. 114, p. 124155.CrossRefGoogle Scholar
Comer, V.J., 1992, The first documentation of a lower Middle Pennsylvanian Upland flora from the eastern margin of the Eastern Interior Basin (Illinois Basin) [M.Sc. dissertation]: Charleston, Eastern Illinois University, 87 p.Google Scholar
Corsin, P., 1932, Guide paléontologique dans le terrain houiller du Nord de la France: Travaux et Mémoires de l’Université de Lille, v. 5, p. 144, pls. A–C, 1–40.Google Scholar
Corsin, P., 1960, Classification des Ptéridophytes et des Ptéridospermophytes du Carbonifère: Bulletin de la Société Géologique de France (Série 7), v. 2, p. 566572.Google Scholar
Corsin, P., and Corsin, P., 1971, Zonation biostratigraphique due Houiller des bassins due Nord–Pas-de-Calais et de Lorraine: Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Série D (Sciences naturelles), v. 273, p. 783788.Google Scholar
Crookall, R., 1959, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 2, p. 85216, pls. 25–58.Google Scholar
Crookall, R., 1964, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 3, p. 217354, pls. 59–81.Google Scholar
Crookall, R., 1966, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 4, p. 355572, pls. 82–106.Google Scholar
Crookall, R., 1969, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 5, p. 573792, pls. 107–150.Google Scholar
Crookall, R., 1970, Fossil plants of the Carboniferous rocks of Great Britain (Second Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 4, pt. 6, p. 793840, pls. 151–159.Google Scholar
Darrah, W.C., 1969, A Critical Review of the Upper Pennsylvanian Floras of Eastern United States with Notes on the Mazon Creek Flora of Illinois: Gettysburg, Privately published, 220 p., pls. 1–80.Google Scholar
Davydov, V.I., Crowley, J.L., Schmitz, M.D., and Poletaev, V.I., 2010, High-precision U–Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine: Geochemistry, Geophysics, Geosystems, v. 11, Q0AA04 doi:10.1029/2009GC002736.CrossRefGoogle Scholar
Demko, T.M., and Gastaldo, R.A., 1992, Paludal environments of the Mary Lee coal zone, Pottsville Formation, Alabama: stacked clastic swamps and peat mires: International Journal of Coal Geology, v. 20, p. 2347.CrossRefGoogle Scholar
DiMichele, W.A., 1979a, Arborescent lycopods of Pennsylvanian age coals: Lepidophloios : Palaeontographica Abteilung B (Palaeophytologie), v. 171, p. 5777.Google Scholar
DiMichele, W.A., 1979b, Arborescent lycopods of Pennsylvanian age coals: Lepidodendron dicentricum C. Felix: Palaeontographica Abteilung B (Palaeophytologie), v. 171, p. 122136.Google Scholar
DiMichele, W.A., 1983, Lepidodendron hickii and generic delimitation in Carboniferous lepidodendrid lycopods: Systematic Botany, v. 8, p. 317333.CrossRefGoogle Scholar
DiMichele, W.A., 1985, Diaphorodendron, gen. nov., a segregate from Lepidodendron (Pennsylvanian age): Systematic Botany, v. 10, p. 453458.CrossRefGoogle Scholar
DiMichele, W.A., 2014, Wetland-dryland vegetational dynamics in the Pennsylvanian Ice Age tropics: International Journal of Plant Sciences, v. 175, p. 123164.CrossRefGoogle Scholar
DiMichele, W.A., and Bateman, R.M., 1992, Diaphorodendraceae, fam. nov. (Lycopsida: Carboniferous): systematics and evolutionary relationships of Diaphorodendron and Synchysidendron, gen. nov.: American Journal of Botany, v. 79, p. 605617.CrossRefGoogle Scholar
DiMichele, W.A., and Bateman, R.M., 1993, Validation of Synchysidendron, gen. nov. (Fossiles): Taxon, v. 42, p. 647648.CrossRefGoogle Scholar
DiMichele, W.A., and Chaney, D.S., 2005, Pennsylvanian-Permian fossil floras from the Cutler Group, Cañon del Cobre and Arroyo del Agua areas, in northern New Mexico: New Mexico Museum of Natural History and Science Bulletin, v. 31, p. 2633.Google Scholar
DiMichele, W.A., and Nelson, W.J., 1989, Small-scale spatial heterogeneity in Pennsylvanian-age vegetation from the roof shale of the Springfield Coal (Illinois Basin): Palaios, v. 4, p. 276280.CrossRefGoogle Scholar
DiMichele, W.A., and Phillips, T.L., 1996a, Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and the persistence of primitive plant communities in the Pennsylvanian-age tropics: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 127, p. 83105.CrossRefGoogle Scholar
DiMichele, W.A., and Phillips, T.L., 1996b, Climate change, plant extinctions, and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America, in M. L. Hart, ed., Biotic Recovery from Mass Extinctions: Geological Society Special Publication, v. 102, p. 201221.Google Scholar
DiMichele, W.A., Phillips, T.L., and Olmstead, R.G., 1987, Opportunistic evolution: abiotic environmental stress and the fossil record of plants: Review of Palaeobotany and Palynology, v. 50, p. 151178.CrossRefGoogle Scholar
DiMichele, W.A., Pfefferkorn, H.W., and Phillips, T.L., 1996, Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, p. 105128.CrossRefGoogle Scholar
DiMichele, W.A., Phillips, T.L., and Nelson, W.J., 2002, Place vs. time and vegetational persistence: a comparison of four tropical mires from the Illinois Basin during the height of the Pennsylvanian Ice Age: International Journal of Coal Geology, v. 50, p. 4372.CrossRefGoogle Scholar
DiMichele, W.A., Tabor, N.J., and Chaney, D.S., 2005, Outcrop-scale environmental heterogeneity and vegetational complexity in the Permo-Carboniferous Markley Formation of North Central Texas: New Mexico Museum of Natural History and Science Bulletin, v. 30, p. 6066.Google Scholar
DiMichele, W.A., Falcon-Lang, H.J., Nelson, W.J., Elrick, S.D., and Ames, P.R., 2007, Ecological gradients within a Pennsylvanian mire forest: Geology, v. 35, p. 415418.CrossRefGoogle Scholar
DiMichele, W.A., Elrick, S.D., and Bateman, R.M., 2013a, Growth habit of the late Paleozoic rhizomorphic tree-lycopsid family Diaphorodendraceae: Phylogenetic, evolutionary, and paleoecological significance: American Journal of Botany, v. 100, p. 16041625.CrossRefGoogle ScholarPubMed
DiMichele, W.A., Wagner, R.H., Bashforth, A.R., and Álvarez-Vázquez, C., 2013b, An update on the flora of the Kinney Quarry of central New Mexico (Upper Pennsylvanian), its preservational and environmental significance: New Mexico Museum of Natural History and Science Bulletin, v. 59, p. 289325.Google Scholar
Dix, E., 1934, The sequence of floras in the Upper Carboniferous, with special reference to South Wales: Transactions of the Royal Society of Edinburgh, v. 57, p. 789838.CrossRefGoogle Scholar
Douglass, R.C., 1987, Fusulinid biostratigraphy and correlations between the Appalachian and Eastern Interior basins: United States Geological Survey Professional Paper, v. 1451, p. 195.Google Scholar
Du Mortier, B.-C., 1829, Analyse des Familles des Plantes, avec l’Indication des Principaux Genres qui s’y Rattachent, Tournay, J. Casterman, 104 p.Google Scholar
Eichwald, E., 1840, Die Urwelt Russlands Durch Abbildungen Erlæutert, Erstes Heft: St. Petersburg, Journal de Saint-Petersbourg, 106 p.Google Scholar
Falcon-Lang, H.J., and DiMichele, W.A., 2010, What happened to the coal forests during Pennsylvanian glacial phases?: Palaios, v. 25, p. 611617.CrossRefGoogle Scholar
Falcon-Lang, H.J., Heckel, P.H., DiMichele, W.A., Blake, B.M. Jr., Easterday, C.R., Eble, C.F., Elrick, S., Gastaldo, R.A., Greb, S.F., Martino, R.L., Nelson, W.J., Pfefferkorn, H.W., Phillips, T.L., and Rosscoe, S.J., 2011, No major stratigraphic gap exists near the Middle-Upper Pennsylvanian (Desmoinesian-Missourian) boundary in North America: Palaios, v. 26, p. 125139.CrossRefGoogle Scholar
Felix, C.J., 1952, A study of the arborescent lycopods of southeastern Kansas: Annals of the Missouri Botanical Garden, v. 39, p. 263288.CrossRefGoogle Scholar
Fielding, C.R., Frank, T.D., and Isbell, J.L., 2008, The Late Paleozoic Ice Age: a review of current understanding and synthesis of global climate patterns, in Fielding, C.R., Frank, T.D., and Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age In Time and Space: Geological Society of America Special Paper, v. 44, p. 343354.CrossRefGoogle Scholar
Gastaldo, R.A., 1977, A Middle Pennsylvanian nodule flora from Carterville, Illinois, in Romans, R.C., ed., Geobotany: New York, Plenum Press, p. 133156.CrossRefGoogle Scholar
Gastaldo, R.A., 1987, Confirmation of Carboniferous clastic swamp communities: Nature, v. 326, p. 869871.CrossRefGoogle Scholar
Gastaldo, R.A., and Boersma, M.A., 1983a, A reinvestigation of Early Pennsylvanian species of Mariopteris from the Appalachian Region. I. Karinopteris, Mariopteris and the “Pottsvillea Complex”: Review of Palaeobotany and Palynology, v. 38, p. 185226.CrossRefGoogle Scholar
Gastaldo, R.A., and Boersma, M.A., 1983b, A reinvestigation of Early Pennsylvanian species of Mariopteris from the Appalachian Region. II. Eusphenopteris and Sphenopteris : Review of Palaeobotany and Palynology, v. 38, p. 227247.CrossRefGoogle Scholar
Gastaldo, R.A., Stevanoviç-Walls, I.M., Ware, W.N., and Greb, S.F., 2004, Community heterogeneity of Early Pennsylvanian peat mires: Geology, v. 32, p. 693696.CrossRefGoogle Scholar
Gillespie, W.H., and Pfefferkorn, H.W., 1979, Distribution of commonly occurring plant megafossils in the proposed Pennsylvanian System stratotype, in Englund, K. J., Arndt, H.H., and Henry, T.W., eds., Proposed Pennsylvanian System Stratotype: Virginia and West Virginia: American Geological Institute Selected Guidebook Series, v. 1, p. 8796.Google Scholar
Gillespie, W.H., Clendening, J.A., and Pfefferkorn, H.W., 1978, Plant fossils of West Virginia and adjacent areas: West Virginia Geological and Economic Survey Educational Series, ED-3A, p. 1172.Google Scholar
Göppert, H.R., 1836, Die fossilen Farrnkräuter (Systema filicum fossilium): Verhandlungen der kaiserlichen Leopoldinischen-Carolinischen Akademie der Naturforscher, v. 17 (supplement), p. 1486, pls. 1–44.Google Scholar
Göppert, H.R., 1848, in Bronn, H.G., Index Palaeontologicus oder Übersicht der bis jetzt bekannten fossilen Organismen, Nomenclator palaeontologicus in alphabetischer Ordnung, vol. 2, parts N–Z: Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung und Druckerei, p. 777–1381.Google Scholar
Gothan, W., 1913, Die oberschlesische Steinkohlenflora. I. Farne und farnähnliche Gewächse (Cycadofilices bezw. Pteridospermen): Abhandlungen der königlichen Preussischen Geologischen Landesanstalt (Neue Folge), v. 75, p. 1278, pls. 1–53.Google Scholar
Gothan, W., 1941, Paläobotanische Mitteilungen. 5–7. Die Unterteilung der karbonischen Neuropteriden: Paläontologische Zeitschrift, v. 22, p. 421438.CrossRefGoogle Scholar
Gothan, W., and Remy, W., 1957, Steinkohlenpflanzen, Leitfaden zum Bestimmen der wichtigsten pflanzlichen Fossilien des Paläozoikums im rheinisch-westfälischen Steinkohlengebiet: Essen, Verlag Glückauf, 248 p.Google Scholar
Greb, S.F., Andrews, W.M., Eble, C.F., DiMichele, W.A., Cecil, C.B., and Hower, J.C., 2003, Desmoinesian coal beds of the Eastern Interior and surrounding basins: the largest tropical peat mires in earth history, in Chan, M.A., and Archer, A.W., eds., Extreme Depositional Environments: Mega-end Members in Geologic Time: Geological Society of America Special Paper, v. 370, p. 127150.CrossRefGoogle Scholar
Gutbier, A., von, 1835, Abdrücke und Versteinerungen des Zwickauer Schwarzkohlengebirges und seiner Umgebungen: Zwickau, G. Richter’sche Buchhandlung, 80 p., pls. 1–11.Google Scholar
Gutbier, A., von, 1837, Pflanzenabdrucke des Rothliegenden und der Kohlenformation der gegend von Zwickau: Isis, encyclopädische Zeitschrift vorzüglich für Naturgeschichte, vergleichender Anatomie und Physiologie, v. 5–7, p. 435436.Google Scholar
Gutbier, A., von, 1849, Die Versteinerungen des Rothliegenden in Sachsen, in Geinitz, H.B., and Gutbier, A., eds., Die Versteinerungen des Zechsteingebirges und Rothliegenden Oder des Permischen Systemes in Sachsen: Dresden, Arnold, vol. 2, p. 139.Google Scholar
Harms, V.L., and Leisman, G.A., 1961, The anatomy and morphology of certain Cordaites leaves: Journal of Paleontology, v. 35, p. 10411064.Google Scholar
Hatcher, R.D., 2002, Alleghanian (Appalachian) orogeny, a product of zipper tectonics: rotational transpressive continent-continent collision and closing of ancient oceans along irregular margins, in Martinez Catalán, J.R., Hatcher, Jr., R.D., Arenas, R., and Díaz García, F., eds., Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement: Geological Society of America Special Paper, v. 364, p. 199208.CrossRefGoogle Scholar
Hatcher, R.D., 2010, The Appalachian orogen: a brief summary, in Tollo, R.P., ed., From Rodinia to Pangea, the Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir, v. 206, p. 119.Google Scholar
Haughton, S., 1860, On Cyclostigma, a new genus of fossil plants from the Old Red Sandstone of Kiltorcan, co. Kilkenny; and on the general law of phyllotaxis in the natural orders Lycopodiaceæ, Equisetaceæ, Filices, & c.: Annals and Magazine of Natural History, Third Series, v. 5, p. 433445.Google Scholar
Heckel, P.H., 1977, Origin of phosphatic black shale facies in Pennsylvanian cyclothems of Mid-Continent North America: American Association of Petroleum Geologists Bulletin, v. 61, p. 10451068.Google Scholar
Heckel, P.H., 1980, Paleogeography of eustatic model for deposition of Midcontinent Upper Pennsylvanian cyclothems, in Fouch, T.D., and Magathan, E.R., eds., Paleozoic Paleogeography of West-Central United States: Society of Economic Paleontologists and Mineralogists, Rocky Mountain Section, Paleogeography Symposium, v. 1, p. 197215.Google Scholar
Heckel, P.H., 1986, Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along midcontinent outcrop belt, North America: Geology, v. 14, p. 330334.2.0.CO;2>CrossRefGoogle Scholar
Heckel, P.H., 2013, Pennsylvanian stratigraphy of Northern Midcontinent Shelf and biostratigraphic correlation of cyclothems: Stratigraphy, v. 10, p. 339.Google Scholar
Hirmer, M., 1927, Handbuch der Paläobotanik. Band I, Thallophyta—Bryophyta—Pteridophyta: Berlin, R. Oldenbourg, 708 p.Google Scholar
Hoffmann, F., 1826a, Über die Pflanzenreste des Kohlengebirges von Ibbenbühren und vom Piesberge bei Osnabrück, in Keferstein, C., ed., Teutschland, Geognostisch-geologisch Dargestellt, mit Charten und Durchschnittszeichnungen, Welche Einen Geognostischen Atlas Bilden, v. 4, pt. 2, p. 151168, figs. 1–10.Google Scholar
Hoffmann, F., 1826b, Untersuchungen über die Pflanzen-Reste des Kohlengebirges von Ibbenbühren und vom Piesberge bei Osnabrück, in Karsten, C.J.B., ed., Archiv für Bergbau und Hüttenwesen, v. 13, pt. 2, p. 266282.Google Scholar
Houseknecht, D.W., 1983, Tectonic-sedimentary evolution of the Arkoma basin and guidebook to deltaic facies, Hartshorne Sandstone: Society of Economic Paleontologists and Mineralogists, Midcontinent Section, v. 1, p. 1119.Google Scholar
Hutchison, H.C., 1976, Geology of the Catlin-Mansfield area, Parke and Putnam counties, Indiana: Indiana Geological Survey Bulletin, v. 54, p. 157.Google Scholar
Jackson, T.F., 1916, The description and stratigraphic relationships of fossil plants from the Lower Pennsylvanian rocks of Indiana: Proceedings of the Indiana Academy of Science, v. 26, p. 405439.Google Scholar
Janssen, R.E., 1940, Some fossil plant types of Illinois: a restudy of the Lesquereux types in the Worthen Collection of the Illinois State Museum, augmented by descriptions of new species from Mazon Creek: Illinois State Museum Scientific Papers, v. 1, p. 1124.Google Scholar
Janssen, R.E., 1979, Leaves and stems from fossil forests: Illinois State Museum Popular Science Series, v. 1, p. 1190.Google Scholar
Jongmans, W.J., 1937a, Contribution to a comparison between the Carboniferous floras of the United States and of Western Europe: Compte Rendu du Deuxième Congrès pour l’Avancement des Études de Stratigraphie Carbonifère (Heerlen, 1935), v. 1, p. 363387.Google Scholar
Jongmans, W.J., 1937b, Comparison of the floral succession in the Carboniferous of West Virginia with Europe: Compte Rendu du Deuxième Congrès pour l’Avancement des Études de Stratigraphie Carbonifère (Heerlen, 1935), v. 1, p. 393415, pls. 11–36.Google Scholar
Jongmans, W.J., 1937c, Some remarks on Neuropteris ovata in the American Carboniferous: Compte Rendu du Deuxième Congrès pour l’Avancement des Études de Stratigraphie Carbonifère (Heerlen, 1935), v. 1, p. 417422, pls. 37–42.Google Scholar
Jongmans, W.J., and Gothan, W., 1934, Florenfolgen und vergleichende Stratigrafie des Karbons der östlichen Staaten Nord-Amerika’s. Vergleich mit West-Europa: Geologisch Bureau voor het Nederlandsche Mijngebied te Heerlen, Jaarverslag over 1933, p. 17–44.Google Scholar
Josten, K.-H., 1962, Neuropteris semireticulata, eine neue Art als Bindeglied zwischen den Gattungen Neuropteris und Reticulopteris : Palaontologische Zeitschrift, v. 36, p. 3345.CrossRefGoogle Scholar
Josten, K.-H., 1991, Die Steinkohlen-Floren Nordwestdeutschlands: Fortschritte in der Geologie von Rheinland und Westfalen, v. 36, p. 1434, pls. 1–220.Google Scholar
Josten, K.-H., and Laveine, J.-P., 1984, Paläobotanisch-stratigraphische Untersuchungen im Westfal C-D von Nordfrankreich und Nordwestdeutschland: Fortschritte in der Geologie von Rheinland und Westfalen, v. 32, p. 89117.Google Scholar
Kerp, J.H.F., 1984, Aspects of Permian palaeobotany and palynology. V. On the nature of Asterophyllites dumasii Zeiller, its correlation with Calamites gigas and the problem concerning its sterile foliage: Review of Palaeobotany and Palynology, v. 41, p. 301317.CrossRefGoogle Scholar
Kidston, R., 1888, On the fossil flora of the Radstock Series of the Somerset and Bristol Coal Field (Upper Coal Measures). Part I.: Transactions of the Royal Society of Edinburgh, v. 33, p. 335417, pls. 18–28.CrossRefGoogle Scholar
Kidston, R., 1923, Fossil plants of the Carboniferous rocks of Great Britain (First Section): Memoirs of the Geological Survey of Great Britain, Palaeontology, v. 2, pt. 1, p. 1110, pls. A–E, 1–22.Google Scholar
Knoll, A.H., 1985, Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats: Philosophical Transactions of the Royal Society of London, v. 311B, p. 111122.CrossRefGoogle Scholar
Kosanke, R.M., 1950, Pennsylvanian spores of Illinois and their use in correlation: Illinois State Geological Survey Bulletin, v. 74, p. 1128.Google Scholar
Kvaček, J., and Straková, M., 1997, Catalogue of Fossil Plants Described in the Works of Kaspar M. Sternberg: Prague, National Museum, 201 p.Google Scholar
Kvale, E.P., Mastalerz, M., Furer, L.C., Engelhardt, D.W., Rexroad, C.B., and Eble, C.F., 2004, Atokan and early Desmoinesian coal-bearing parasequences in Indiana, U.S.A., in Pashin, J.C., and Gastaldo, R.A., eds., Sequence Stratigraphy, Paleoclimate, and Tectonics of Coal-bearing Strata: American Association of Petroleum Geology Studies in Geology, v. 51, p. 7188.Google Scholar
Langenheim, R.L., and Nelson, W.J., 1992, The cyclothemic concept in the Illinois Basin: a review, in Dott, R.H., ed., Eustasy: The Historical Ups and Downs of a Major Geological Concept: Geological Society of America Memoir, v. 180, p. 5572.CrossRefGoogle Scholar
Langford, G., 1958, The Wilmington Coal Flora from a Pennsylvanian Deposit in Will County, Illinois: Downers Grove, Illinois, ESCONI Associates, 360 p.Google Scholar
Langford, G., 1963, The Wilmington Coal Fauna and Additions to the Wilmington Coal Flora from a Pennsylvanian Deposit in Will County, Illinois: Downers Grove, Illinois, ESCONI Associates, 280 p.Google Scholar
Laveine, J.-P., 1967, Contribution à l’étude de la flore du terrain houiller. I. Flore fossile, Part 5. Les Neuroptéridées du Nord de la France: Études géologiques pour l’Atlas de topographie souterraine, Service géologique des Houillères du Bassin du Nord et du Pas-de-Calais, 344 p., pls. 1–84.Google Scholar
Laveine, J.-P., 1977, Report on the Westphalian D, in Holub, V.M., and Wagner, R.H., eds., Symposium on Carboniferous Stratigraphy: Prague, Ústřední ústav geologický, p. 7187.Google Scholar
Laveine, J.-P., 1987, La flore du bassin houiller du Nord de la France. Biostratigraphie et méthodologie: Annales de la Société géologique du Nord, v. 106, p. 8793.Google Scholar
Laveine, J.-P., 1989, Guide Paléobotanique dans le Terrain Houiller Sarro-Lorrain: Documents des Houillères du Bassin de Lorraine, 154 p., pls. 1–64.Google Scholar
Laveine, J.-P., 2005, The Cyclopteris of Laveineopteris (Late Carboniferous pteridosperm). Fancies and facts: methodological and taxonomical implications: Revue de Paléobiologie, v. 24, p. 403487.Google Scholar
Laveine, J.-P., and Belhis, A., 2007, Frond architecture of the seed-fern Macroneuropteris scheuchzeri, based on Pennsylvanian specimens from the Northern France coal field: Palaeontographica Abteilung B (Palaeophytologie), v. 277, p. 141.CrossRefGoogle Scholar
Laveine, J.-P., and Oudoire, T., 2015, Partial alopecia for the Permo-Pennsylvanian seed-fern Macroneuropteris scheuchzeri : Review of Palaeobotany and Palynology, v. 216, p. 132142.CrossRefGoogle Scholar
Laveine, J.-P., Zhang, S., and Lemoigne, Y., 2000, Palaeophytogeography and palaeogeography on the basis of examples from the Carboniferous: Revue Paléobiologie Genève, v. 19, p. 409425.Google Scholar
Leighton, M.W., Kolata, D.R., Oltz, D.F., and Eidel, J.J., eds., 1991, Interior Cratonic Basins: American Association of Petroleum Geologists Memoir, v. 51, 819 p.Google Scholar
Lesnikowska, A.D., and Willard, D.A., 1997, Two new species of Scolecopteris (Marattiales), sources of Torispora securis Balme and Thymospora thiessenii (Kosanke) Wilson et Venkatachala: Review of Palaeobotany and Palynology, v. 95, p. 211225.CrossRefGoogle Scholar
Lesquereux, L., 1854, New species of fossil plants, from the Anthraref and Bituminous coal-fields of Pennsylvania; collected and described by Leo Lesquereux. With introductory observations by Henry Darwin Rogers: Boston Journal of Natural History, v. 6, n. 4., p. 409431.Google Scholar
Lesquereux, L., 1861, Report of the fossil flora, and the stratigraphical distribution of the coal in the Kentucky coal fields, in Owen, D.D., ed., Fourth Report of the Geological Survey in Kentucky, made during the years 1858 and 1859, Frankfurt, Kentucky, A.G. Hodges, public printer, p. 331437, pls. 6, 7.Google Scholar
Lesquereux, L., 1866, Enumeration of the fossil plants found in the Coal Measures of Illinois, with descriptions of new species: Geological Survey of Illinois, vol. 2 (Palæontology), Section 3 (Fossil Plants), p. 425–470, pls. 33–50.Google Scholar
Lesquereux, L., 1868, Fossil plants of the coal strata of Pennsylvania, in Rogers, H.D., ed., The Geology of Pennsylvania. A Government Survey, with a General View of the Geology of the United States, Essays on the Coal-Formation and its Fossils, and a Description of the Coal-Fields of North America and Great Britain, Philadelphia, J.B. Lippincott & Co., v. 2, pt. 2, p. 835884, pls. 1–21.Google Scholar
Lesquereux, L., 1870, Report on fossil plants of Illinois: Geological Survey of Illinois, v. 4 (Geology and Palæontology), Pt. 2 (Palæontology of Illinois), Section 2, p. 375–508, pls. 5–31.Google Scholar
Lesquereux, L., 1879-1884, Description of the coal flora of the Carboniferous formations in Pennsylvania and throughout the United States: Second Geological Survey of Pennsylvania, Report of Progress P, v. 1, p. 1354 (1880), v. 2, p. 355–694 (1880), v. 3, p. 695–922 (1884), pls. 1–85 (1879), pls. 88–111 (1884).Google Scholar
Lindley, J., and Hutton, W., 1831, The Fossil Flora of Great Britain, or Figures and Descriptions of the Vegetable Remains Found in a Fossil State in this Country: London, James Ridgway and Sons, v. 1, p. 148.Google Scholar
Lindley, J., and Hutton, W., 1832, The Fossil Flora of Great Britain, or Figures and Descriptions of the Vegetable Remains Found in a Fossil State in this Country: London, James Ridgway and Sons, v. 1, p. 49166.Google Scholar
Lindley, J., and Hutton, W., 1833, The Fossil Flora of Great Britain, or Figures and Descriptions of the Vegetable Remains Found in a Fossil State in this Country: London, James Ridgway and Sons, v. 1, p. 167218.Google Scholar
Mamay, S.H., and Mapes, G., 1992, Early Virgilian plant megafossils from the Kinney Brick Company Quarry, Manzanita Mountains, New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin, v. 138, p. 6185.Google Scholar
Mastalerz, M., Stankiewicz, A.B., Salmon, G., Kvale, E.P., and Millard, C.L., 1997, Organic geochemical study of sequences overlying coal seams; example from the Mansfield Formation (Lower Pennsylvanian), Indiana: International Journal of Coal Geology, v. 33, p. 275299.Google Scholar
Mastalerz, M., Padgett, P.L., and Eble, C.F., 2000, Block coals from Indiana: inferences on changing depositional environment: International Journal of Coal Geology, v. 43, p. 211226.CrossRefGoogle Scholar
Mastalerz, M., Ames, P.R., and Padgett, P.L., 2003, Coals of the Brazil Formation (Pennsylvanian) in Indiana: observations of correlation inconsistencies and their implications: International Journal of Coal Geology, v. 54, p. 209222.CrossRefGoogle Scholar
Meyen, S.V., 1978, An attempt at a radical improvement of suprageneric taxonomy of fossil plants: Phyta, v. 1, p. 7686.Google Scholar
Meyen, S.V., 1984, Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record: The Botanical Review, v. 50, p. 1111.CrossRefGoogle Scholar
Moore, L.C., Wittry, J., and DiMichele, W.A., 2014, The Okmulgee, Oklahoma fossil flora, a Mazon Creek equivalent: Spatial conservatism in the composition of Middle Pennsylvanian wetland vegetation over 1100 km: Review of Palaeobotany and Palynology, v. 200, p. 2452.CrossRefGoogle Scholar
Moore, R.C., Wanless, H.R., Weller, J.M., Steele Williams, J., Read, C.B., Bell, W.A., Ashley, G.H., Cheney, M.G., Cline, L.M., Condra, G.E., Dott, R.H., Dunbar, C.O., Elias, M.K., Glenn, F.C., Greene, T.A., Hendricks, J.M., Jewett, J.M., Johnson, J.H., King, P.B., Knight, J.B., Levorsen, A.I., Miser, H.D., Newell, N.D., Plummer, F.B., Thompson, M.L., Tomlinson, C.W., and Westheimer, J., 1944, Correlation of Pennsylvanian formations of North America: Geological Society of America Bulletin, v. 55, p. 657706.Google Scholar
Nelson, W.J., Trask, C.B., Jacobson, R.J., Damberger, H.H., Williamson, A.D., and Williams, D.A., 1991, Absaroka Sequence, Pennsylvanian and Permian Systems, in Leighton, M.W., Kolata, D.R., Oltz, D.F., and Eidel, J.J., eds., Interior Cratonic Basins: American Association of Petroleum Geologists Memoir, v. 51, p. 143194.Google Scholar
Nelson, W.J., Greb, S.F., and Weibel, C.P., 2013, Pennsylvanian Subsystem in the Illinois Basin: Stratigraphy, v. 10, p. 4154.Google Scholar
Neves, R., 1958, Upper Carboniferous plant spore assemblages from the Gastrioceras subcrenatum horizon, North Staffordshire: Geological Magazine, v. 95, p. 119.CrossRefGoogle Scholar
Newberry, J.S., 1891, The genus Sphenophyllum : Journal of the Cincinnati Society of Natural History, v. 13, p. 212217.Google Scholar
Noé, A.C., 1925, Pennsylvanian flora of northern Illinois: Illinois State Geological Survey Bulletin, v. 52, p. 1113.Google Scholar
Novik, E.O., 1947, Classification of Carboniferous pteridosperms: Doklady Akademii Nauk, SSSR, v. 58, p. 277279.Google Scholar
Novik, E.O., 1952, Carboniferous flora of the European part of the U.S.S.R: Paleontologija SSSR (Novaya Seriya), v. 1, p. 1468, pls. 1–71.Google Scholar
Oleksyshyn, J., 1982, Fossil plants from the anthraref coal fields of eastern Pennsylvania: Pennsylvania Geological Survey, General Geology Report, v. 72, p. 1157.Google Scholar
Opluštil, S., Pšenička, J., Libertín, M., Bashforth, A.R., Šimůnek, Z., Drábková, J., and Dašková, J., 2009a, A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic: Review of Palaeobotany and Palynology, v. 155, p. 234274.CrossRefGoogle Scholar
Opluštil, S., Pšenička, J., Libertín, M., Bek, J., Dašková, J., Šimůnek, Z., and Drábková, J., 2009b, Composition and structure of an in situ Middle Pennsylvanian peat-forming plant assemblage buried in volcanic ash, Radnice Basin (Czech Republic): Palaios, v. 24, p. 726746.CrossRefGoogle Scholar
Peppers, R.A., 1984, Comparison of miospore assemblages in the Pennsylvanian System of the Illinois Basin with those in the Upper Carboniferous of western Europe: Compte Rendu Neuvième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Washington and Champaign-Urbana, 1979), v. 2, p. 483502.Google Scholar
Peppers, R.A., 1993, Palynological correlation of the Lewisport coal bed (early Desmoinesian) and equivalent coal in the Illinois Basin [unpublished manuscript]: Champaign, Illinois State Geological Survey, 65 p.Google Scholar
Peppers, R.A., 1996, Palynological correlation of major Pennsylvanian (Middle and Upper Carboniferous) chronostratigraphic boundaries in the Illinois and other coal basins: Geological Society of America Memoirs, v. 188, p. 1112.Google Scholar
Peppers, R.A., and Pfefferkorn, H.W., 1970, A comparison of the floras of the Colchester (No. 2) Coal and Francis Creek Shale, in Smith, W.H., Nance, R.B., Hopkins, M.E., Johnson, R.G., and Shabica, C.W., eds., Depositional Environments in Parts of the Carbondale Formation: Geological Society of America Coal Division Field Trip, Illinois State Geological Survey Guidebook Series, v. 8, p. 61–74.Google Scholar
Pfefferkorn, H.W., 1979, High diversity and stratigraphic age of the Mazon Creek Flora, in Nitecki, M.H., ed., Mazon Creek Fossils: New York, Academic Press, p. 129142.CrossRefGoogle Scholar
Pfefferkorn, H.W., and Gillespie, W.H., 1980a, A bibliography of compression-impression floras of Pennsylvanian age in North America 1821 to 1977, in International Working Group on Carboniferous and Permian Compression Floras, eds.: Philadelphia, Schlotheimiana, p. 1–44.Google Scholar
Pfefferkorn, H.W., and Gillespie, W.H., 1980b, Biostratigraphy and biogeography of plant compression fossils in the Pennsylvanian of North America, in Dilcher, D.L., and Taylor, T.N., eds., Biostratigraphy of Fossil Plants: Successional and Paleoecological Analyses, Stroudsburg, Dowden, Hutchinson & Ross, p. 93118.Google Scholar
Pfefferkorn, H.W., and Thomson, M.C., 1982, Changes in dominance patterns in upper Carboniferous plant-fossil assemblages: Geology, v. 10, p. 641644.2.0.CO;2>CrossRefGoogle Scholar
Pfefferkorn, H.W., Mustafa, H., and Hass, H., 1975, Quantitative Charakterisierung oberkarboner Abdruckfloren: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 150, p. 253269.Google Scholar
Pheifer, R.N., 1979, The paleobotany and paleoecology of the unnamed shale overlying the Danville Coal Member (VII) in Sullivan County, Indiana [Ph.D. dissertation]: Bloomington, Indiana University, 285 p.Google Scholar
Potonié, H., 1900, Cycadofilices und sonstige Mittelgruppen zwischen Filicales und höheren Gruppen, in Engler, A., and Prantl, K., eds., Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere der Nutzpflanzen, Teil I, Part 4: Leipzig, W. Engelmann, p. 780798.Google Scholar
Pryor, J.S., and Gastaldo, R.A., 2000, Paleoecological analysis of two Early Pennsylvanian mineral-substrate wetlands: Palaios, v. 15, p. 313.2.0.CO;2>CrossRefGoogle Scholar
Read, C.B., and Mamay, S.H., 1964, Upper Paleozoic floral zones and floral provinces of the United States: United States Geological Survey Professional Paper 454K, 35 p., pls. 1–19.Google Scholar
Remy, W., and Remy, R., 1977, Die Floren des Erdaltertums: Einführung in Morphologie, Anatomie, Geobotanik und Biostratigraphie der Pflanzen des Paläophytikums: Essen, Verlag Glückauf, 468 p.Google Scholar
Rex, G., 1983, The compression state of preservation of Carboniferous lepidodendrid leaves: Review of Palaeobotany and Palynology, v. 39, p. 6585.CrossRefGoogle Scholar
Rexroad, C.B., Brown, L.M., Devera, J.A., and Suman, R.J., 1998, Conodont biostratigraphy and paleoecology of the Perth Limestone Member, Staunton Formation (Pennsylvanian) of the Illinois basin, U.S.A.: Palaeontologia Polonica, v. 58, p. 247259.Google Scholar
Roscher, M., and Schneider, J.W., 2006, Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context, in Lucas, S.G., Cassinis, G., and Schneider, J.W., eds., Non-Marine Permian Biostratigraphy and Biochronology: Geological Society of London, Special Publications, v. 265, p. 95136.Google Scholar
Rygel, M.C., Fielding, C.R., Frank, T.D., and Birgenheier, L.P., 2008, The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis: Journal of Sedimentary Research, v. 78, p. 500511.CrossRefGoogle Scholar
Saltzwedel, K., 1969, Revision der Imparipteris ovata (Hoffmann) Gothan, 1. Teil: Typus und Typoid-Material vom locus typicus: Argumenta Palaeobotanica, v. 3, p. 131162, pls. 24–27.Google Scholar
Schabilion, J.T., and Reihman, M.A., 1985, Anatomy of petrified Neuropteris scheuchzeri pinnules from the Middle Pennsylvanian of Iowa: a paleoecological interpretation: Compte Rendu Neuvième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Washington and Champaign-Urbana, 1979), v. 5, p. 312.Google Scholar
Scheihing, M.H., and Pfefferkorn, H.W., 1980, Morphologic variation in Alethopteris (Pteridosperms, Carboniferous) from St. Clair, Pennsylvania, USA: Palaeontographica Abteilung B (Palaeophytologie), v. 172, p. 19.Google Scholar
Schenk, A., 1883, Pflanzen aus der Steinkohlenformation, in Richthofen, F. von, ed., China. Ergebnisse eigner Reisen und darauf gegründeter Studien, 4: Berlin, D. Reimer, p. 211244.Google Scholar
Scott, A.C., 1978, Sedimentological and ecological control of Westphalian B plant assemblages from West Yorkshire: Proceedings of the Yorkshire Geological Society, v. 41, p. 461508.CrossRefGoogle Scholar
Sellards, E.H., 1908, Fossil plants of the Upper Paleozoic of Kansas: The University Geological Survey of Kansas, v. 9 (Special Report on Oil and Gas), p. 386–480, pls. 44–69.Google Scholar
Seward, A.C., 1898, Fossil Plants. A Text-book for Students of Botany and Geology. Vol. I: Cambridge, Cambridge University Press, 452 p.CrossRefGoogle Scholar
Shaver, R.H., 1984, Atokan Series concepts with special reference to the Illinois Basin and Iowa, in Sutherland, P.K., and Manger, W.L., eds., The Atokan Series (Pennsylvanian) and its Boundaries–A Symposium: Oklahoma Geological Survey Bulletin, v. 136, p. 101–113.Google Scholar
Shaver, R.H., and Smith, S.G., 1974, Some Pennsylvanian kirkbyacean ostracods of Indiana and Midcontinent series terminology: Indiana Geological Survey Report of Progress, v. 31, p. 159.Google Scholar
Shute, C.H., and Cleal, C.J., 1987, Palaeobotany in museums: Geological Curator, v. 4, p. 553559.Google Scholar
Simson-Scharold, E., 1934, Zur Kenntnis der Carbonflora des Saargebietes: Palaeontographica Abteilung B (Palaeophytologie), v. 79, p. 166, pls. 1–7.Google Scholar
Šimůnek, Z., 2006, New classification of the genus Cordaites from the Carboniferous and Permian of the Bohemian Massif, based on cuticle micromorphology: Sborník Národního muzea v Praze, Řada B, Přírodní vědy, v. 62, p. 97210.Google Scholar
Šimůnek, Z., and Cleal, C.J., 2011, Imparipinnate neuropteroid foliage (Medullosales) from the middle Westphalian of the West and Central Bohemia Coal Basin, Czech Republic: Review of Palaeobotany and Palynology, v. 166, p. 163201.CrossRefGoogle Scholar
Smith, A.H.V., and Butterworth, M.A., 1967, Miospores in the coal seams of the Carboniferous of Great Britain: Palaeontological Association, Special Papers in Palaeontology, v. 1, 324 p.Google Scholar
Staplin, F.L., and Jansonius, J., 1964, Elucidation of some Paleozoic densospores: Palaeontographica Abteilung B (Palaeophytologie), v. 114, p. 95117.Google Scholar
Sternberg, K.M., 1820, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Leipzig, F. Fleischer, v. 1, pt. 1, 24 p., pls. 1–13.Google Scholar
Sternberg, K.M., 1821, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Leipzig, F. Fleischer, v. 1, pt. 2, 33 p., pls. 14–26.Google Scholar
Sternberg, K.M., 1823, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Regensburg, Ernst Brenck’s Wittwe, vol. 1, pt. 3, p. 139, pls. 27–39.Google Scholar
Sternberg, K.M., 1825, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Regensburg, Ernst Brenck’s Wittwe, vol. 1, pt. 4, p. 148, pls. 40–59, A–E.Google Scholar
Sternberg, K.M., 1833, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt: Prague, Johann Spurny, v. 2, pts. 5, 6, p. 180, pls. 1–26, A–E.Google Scholar
Stockmans, F., 1933, Les Neuroptéridées des bassins houillers belges (première partie): Memoires du Musée Royal d’Histoire Naturelle de Belgique, v. 57, p. 161, pls. 1–16.Google Scholar
Storch, D., 1980, Sphenophyllum-Arten aus drei intramontanen Karbonbecken—pflanzengeographische Besdonderheiten im mitteleuropäischen Karbon, in Daber, R., ed., Evolution/Naturgeschichte Pflanzen: Schriftenreihe für Geologische Wissenschaften, v. 16, p. 171273.Google Scholar
Stull, G.W., DiMichele, W.A., Falcon-Lang, H.J., Nelson, W.J., and Elrick, S., 2012, Palaeoecology of Macroneuropteris scheuchzeri, and its implications for resolving the paradox of ‘xeromorphic’ plants in Pennsylvanian wetlands: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 331–332, p. 162176.CrossRefGoogle Scholar
Stull, G.W., Labandeira, C.C., DiMichele, W.A., and Chaney, D.S., 2013, The “seeds” on Padgettia readi are insect galls: reassignment of the plant to Odontopteris, the gall to Ovofoligallites n. gen., and the evolutionary implications thereof: Journal of Paleontology, v. 87, p. 217231.CrossRefGoogle Scholar
Sutherland, P.K., and Manger, W.L., 1984, The Atokan Series: an interval in search of a name, in Sutherland, P.K., and Manger, W.L., eds., The Atokan Series (Pennsylvanian) and its Boundaries–A Symposium: Oklahoma Geological Survey Bulletin, v. 136, p. 18.Google Scholar
Tabor, N.J., Romanchock, C.M., Looy, C.V., Hotton, C.L., DiMichele, W.A., and Chaney, D.S., 2013, Conservatism of Late Pennsylvanian vegetational patterns during short-term cyclic and long-term directional environmental change, western equatorial Pangea, in Gąsiewicz, A., and Słowokiewicz, M., eds., Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact: Geological Society of London, Special Publications, v. 376, p. 201234.Google Scholar
Taylor, T.N., 1978, The ultrastructure and reproductive significance of Monoletes (Pteridospermales) pollen: Canadian Journal of Earth Sciences, v. 56, p. 31053118.Google Scholar
Teichmüller, M., and Teichmüller, R., 1982, The geologic basis of coal formation, in Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D., and Teichmüller, R., eds., Stach’s Textbook of Coal Petrology, 3rd edition: Berlin–Stuttgart, Borntraeger, p. 586.Google Scholar
The Tri-State Committee on Correlation of the Pennsylvanian System in the Illinois Basin 2001, Toward a more uniform stratigraphic nomenclature for rock units (formations and groups) of the Pennsylvanian System in the Illinois Basin: Illinois Basin Consortium Study, v. 5, 26 p.Google Scholar
Tidwell, W.D., 1967, Flora of the Manning Canyon Shale. Part I: a lowermost Pennsylvanian flora from the Manning Canyon Shale, Utah, and its stratigraphic significance: Brigham Young University Geology Studies, v. 14, p. 366.Google Scholar
Tidwell, W.D., Jennings, J.R., and Bues, S.S., 1992, A Carboniferous flora from the Surprise Canyon Formation in the Grand Canyon, Arizona: Journal of Paleontology, v. 66, p. 10131021.CrossRefGoogle Scholar
Tidwell, W.D., Ash, S.R., Kues, B.S., Kietzke, K.K., and Lucas, S.G., 1999, Early Permian plant megafossils from Carrizo Arroyo, central New Mexico: New Mexico Geological Society Guidebook, v. 50, p. 297304.Google Scholar
Unger, F., 1840, Abhandlung über die Struktur der Calamiten und ihre Rangordnung im Gewächsreiche: Flora, v. 2, p. 654662.Google Scholar
Unger, F., 1842, in Endlicher, S.L., Genera Plantarum Secundum Ordines Naturales Disposita, Supplementum Secundum: Vienna, F. Beck, 114 p.Google Scholar
Unger, F., 1850, Genera et Species Plantarum Fossilium: Vienna, Wilhelmum Braumüller, 627 p.Google Scholar
Van Amerom, H.W.J., 1975, Die eusphenopteridischen Pteridophyllen aus der Sammlung des geologischen Bureaus in Heerlen, unter besonderer Berücksichtigung ihrer Stratigraphie bezüglich des Südlimburger Kohlenreviers: Mededelingen Rijks Geologische Dienst, Serie C, v. 3–1(7), p. 1208.Google Scholar
Van Hoof, T.B., Falcon-Lang, H.J., Hartkopf-Fröder, C., and Kerp, H., 2013, Conifer-dominated palynofloras in the Middle Pennsylvanian strata of the De Lutte-6 borehole, The Netherlands: implications for evolution, palaeoecology and biostratigraphy: Review of Palaeobotany and Palynology, v. 188, p. 1837.CrossRefGoogle Scholar
Van Leckwijck, W.P., 1964, Rapport sur les résultats des travaux de la Sous-commission de Stratigraphie du Carbonifère: Compte Rendu Cinquième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Paris, 1963), v. 1, p. 3541.Google Scholar
Wagner, R.H., 1963, Stephanian B flora from the Ciñera-Matallana Coalfield (León) and neighbouring outliers. I: introduction, Neuropteris : Notas y Comunicaciones del Instituto Geológico y Minero de España, v. 72, p. 570.Google Scholar
Wagner, R.H., 1968, Upper Westphalian and Stephanian species of Alethopteris from Europe, Asia Minor and North America: Mededelingen Rijks Geologische Dienst, Serie C, v. 3–1(6), p. 1319.Google Scholar
Wagner, R.H., 1984, Megafloral zones of the Carboniferous: Compte Rendu Neuvième Congrès Internationale de Stratigraphie et Géologie du Carbonifère (Washington and Champaign-Urbana, 1979), v. 2, p. 109134.Google Scholar
Wagner, R.H., and Álvarez-Vázquez, C., 2008, A revision of the lower Pennsylvanian Alethopteris lonchitica (auctorum) and its identity with Alethopteris urophylla : Revista Española de Paleontología, v. 23, p. 157192.Google Scholar
Wagner, R.H., and Lyons, P.C., 1997, A critical analysis of the higher Pennsylvanian megafloras of the Appalachian region: Review of Palaeobotany and Palynology, v. 95, p. 255283.CrossRefGoogle Scholar
Wahlman, G.P., 2013, Pennsylvanian to Lower Permian (Desmoinesian-Wolfcampian) fusulinid biostratigraphy of Midcontinent North America: Stratigraphy, v. 10, p. 73104.Google Scholar
Walton, J., 1936, On the factors which influence the external form of fossil plants; with descriptions of the foliage of some species of the Palaeozoic equisetalean genus Annularia Sternberg: Philosophical Transactions of the Royal Society of London, Series B–Biological Sciences, v. 226, p. 219237.CrossRefGoogle Scholar
Wanless, H.R., and Shepard, F.P., 1935, Permo-Carboniferous coal series related to Southern Hemisphere glaciation: Science, v. 81, p. 521522.Google Scholar
Wanless, H.R., and Shepard, F.P., 1936, Sea level and climatic changes related to late Paleozoic cycles: Geological Society of America Bulletin, v. 47, p. 11771206.CrossRefGoogle Scholar
Watney, W.L., Wong, J.-C., and French, J.A., 1989, Computer simulation of Upper Pennsylvanian (Missourian) carbonate-dominated cycles in western Kansas, in Franseen, E.K., Watney, W.L., Kendall, C.G.S., and Ross, W., eds., Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition: Kansas Geological Survey Bulletin, v. 233, p. 415430.Google Scholar
Weiss, C.E., 1881, Beobachtungen an Calamiten und Calamarien: Neues Jahrbuch für Mineralogie, Abhandlungen, v. 2, p. 272274.Google Scholar
Weiss, C.E., and Sterzel, J.T., 1893, Die Sigillarien der preußichen Steinkohlen und Rothleigenden Gebiete. Teil 2: Abhandlungen der Königlich Preussischen geologischen Landesanstalt, Neue Folge, v. 2, p. 1255.Google Scholar
White, D., 1893, Flora of the outlying Carboniferous basins of southwestern Missouri: United States Geological Survey Bulletin, v. 98, p. 1139.Google Scholar
White, D., 1899a, Fossil Flora of the Lower Coal Measures of Missouri: United States Geological Survey Monographs, v. 37, p. 1467, pls. 1–73.Google Scholar
White, D., 1899b, Report on fossil plants from the McAlester Coal Field, Indian Territory, collected by Messrs. Taff and Richardson in 1897: Nineteenth Annual Report of the United States Geological Survey to the Secretary of the Interior (1897–1898), Part 3 (Economic Geology), p. 457–538, pls. 67, 68.Google Scholar
White, D., 1909, The Upper Paleozoic floras, their succession and range: Journal of Geology, v. 17, p. 320341.CrossRefGoogle Scholar
White, D., 1943, Lower Pennsylvanian species of Mariopteris, Eremopteris, Diplothmema, and Aneimites from the Appalachian region: United States Geological Survey Professional Paper, v. 197C, p. C85C140, pls. 8–39.Google Scholar
Willard, D.A., Phillips, T.L., Lesnikowska, A.D., and DiMichele, W.A., 2007, Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems: International Journal of Coal Geology, v. 69, p. 2154.CrossRefGoogle Scholar
Wilson, L.R., and Venkatachala, B.S., 1963, Thymospora, a new name for Verrucososporites : Oklahoma Geological Survey, Oklahoma Geology Notes, v. 23, p. 7579.Google Scholar
Wing, S.L., and DiMichele, W.A., 1995, Conflict between local and global changes in plant diversity through geological time: Palaios, v. 10, p. 551564.CrossRefGoogle Scholar
Wittry, J., 2006, The Mazon Creek Fossil Flora: Downers Grove, ESCONI Associates, 154 p.Google Scholar
Witzke, B.J., 1990, Palaeoclimatic constraints for Palaeozoic palaeolatitudes of Laurentia and Euramerica, in McKerrow, W.S., and Scotese, C.R., eds., Palaeozoic Palaeogeography and Biogeography: Geological Society of London Memoir, v. 12, p. 5773.Google Scholar
Wnuk, C., 1985, The ontogeny and paleoecology of Lepidodendron rimosum and Lepidodendron bretonense trees from the Middle Pennsylvanian of the Bernice Basin (Sullivan County, Pennsylvania): Palaeontographica Abteilung B (Palaeophytologie), v. 195, p. 153181.Google Scholar
Wood, H.C., 1860, Contributions to the Carboniferous flora of the United States: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 12, p. 236240, pls. 4–6.Google Scholar
Wood, H.C., 1869, A contribution to the knowledge of the flora of the Coal Period in the United States: Transactions of the American Philosophical Society (New Series), v. 13, p. 341349, pls. 8, 9.CrossRefGoogle Scholar
Wood, J.M., 1963, The Stanley Cemetery Flora (Early Pennsylvanian) of Greene County, Indiana: Indiana Geological Survey Bulletin, v. 29, p. 173, pls. 1–12.Google Scholar
Zeiller, R., 1878-79a, Explication de la Carte Géologique de la France, Tome Quatrième, Seconde Partie, Végétaux Fossiles du Terrain Houiller (1879), pls. CLIX–CLXXVI (1878): Service de la Carte Géologique de la France, Paris, p. 1–185.Google Scholar
Zeiller, R., 1879b, Presentation de l’Atlas du Tome IV de l’Explication de la Carte Géologique de la France, et note sur le genre Mariopteris : Bulletin de la Société Géologique de France (Série 3), v. 7, p. 9299.Google Scholar
Zeiller, R., 1883, Fructifications de fougères du terrain houiller: Annales des Sciences Naturelles, (Sixième Série, Botanique), v. 16, p. 177209, pls. 9–12.Google Scholar
Zeiller, R., 1886-88, Bassin Houiller de Valenciennes. Description de la Flore Fossile. Études des Gîtes Minéraux de la France: Paris, Ministère des Travaux Publics, p. 1729 (1888), pls. 1–94 (1886).Google Scholar
Zenker, F.C., 1833, Beschreibung von Galium sphenophylloides : Neues Jahrbuch für Mineralogie Geognosie, Geologie und Petrefaktenkunde, v. 4, p. 398400.Google Scholar
Zodrow, E.L., 1986, Succession of paleobotanical events: evidence for mid-Westphalian D floral changes, Morien Group (Late Pennsylvanian, Nova Scotia): Review of Palaeobotany and Palynology, v. 47, p. 293326.CrossRefGoogle Scholar
Zodrow, E.L., 1989, Revision of Silesian sphenophyll biostratigraphy of Canada: Review of Palaeobotany and Palynology, v. 58, p. 301331.CrossRefGoogle Scholar
Zodrow, E.L., 2003, Foliar forms of Macroneuropteris scheuchzeri (Pennsylvanian, Sydney Coalfield, Nova Scotia, Canada): Atlantic Geology, v. 39, p. 2337.CrossRefGoogle Scholar
Zodrow, E.L., and Cleal, C.J., 1985, Phyto- and chronostratigraphical correlations between the late Pennsylvanian Morien Group (Sydney, Nova Scotia) and the Silesian Pennant Measures (south Wales): Canadian Journal of Earth Sciences, v. 22, p. 14651473.CrossRefGoogle Scholar
Zodrow, E.L., and Cleal, C.J., 1988, The structure of the Carboniferous pteridosperm frond Neuropteris ovata Hoffmann: Palaeontographica Abteilung B (Palaeophytologie), v. 208, p. 105124.Google Scholar
Zodrow, E.L., and Cleal, C.J., 1998, Revision of the Pteridosperm foliage Alethopteris and Lonchopteridium (Upper Carboniferous), Sydney Coalfield, Nova Scotia, Canada: Palaeontographica Abteilung B (Palaeophytologie), v. 247, p. 65122.Google Scholar
Zodrow, E.L., and Mastalerz, M., 2009, A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada): Bulletin of Geosciences, v. 84, p. 227240.CrossRefGoogle Scholar
Zodrow, E.L., and McCandlish, K., 1980, Upper Carboniferous Fossil Flora of Nova Scotia in the Collections of the Nova Scotia Museum; with Special Reference to the Sydney Coalfield: Halifax, Nova Scotia Museum, 275 p.Google Scholar
Zodrow, E.L., Šimůnek, Z., and Bashforth, A.R., 2000, New cuticular morphotypes of “Cordaites principalis (Germar) Geinitz” from the Canadian Carboniferous Maritimes Basin: Canadian Journal of Botany, v. 78, p. 135148.CrossRefGoogle Scholar
Zodrow, E.L., D’Angelo, J.A., Werner-Zwanziger, U., and Chen, B., 2014, Hair-trichomes-files, and spectrochemistry of Macroneuropteris scheuchzeri (Basal Cantabrian, Sydney Coalfield, Canada): Palaeontographica Abteilung B (Palaeophytologie), v. 290, p. 141153.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 9
Total number of PDF views: 80 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tmbpq Total loading time: 1.141 Render date: 2021-01-24T00:15:47.857Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }