Skip to main content Accessibility help
Hostname: page-component-55597f9d44-fnprw Total loading time: 0.323 Render date: 2022-08-15T21:23:06.373Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

New sea turtle from the Miocene of Peru and the iterative evolution of feeding ecomorphologies since the Cretaceous

Published online by Cambridge University Press:  14 July 2015

James F. Parham
1Biodiversity Synthesis Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 2Department of Herpetology, California Academy of Sciences, 55 Concourse Drive, San Francisco 94118, USA
Nicholas D. Pyenson
3Department of Zoology, University of British Columbia, #2370-6270 University Boulevard, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 5Current address: Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington DC 20013—7012, USA


The seven species of extant sea turtles show a diversity of diets and feeding specializations. Some of these species represent distinctive ecomorphs that can be recognized by osteological characters and therefore can be identified in fossil taxa. Specifically, modifications to the feeding apparatus for shearing or crushing (durophagy) are easily recognizable in the cranium and jaw. New sea turtle fossils from the Miocene of Peru, described as a new genus and species (Pacifichelys urbinai n. gen. and n. sp.), correspond to the durophagous ecomorph. This new taxon is closely related to a recently described sea turtle from the middle Miocene of California, USA (Pacifichelys hutchisoni n. comb.), providing additional information on the osteological characters of this lineage. A phylogenetic analysis of Pacifichelys and other pan-chelonioid sea turtle lineages shows that at least seven lineages independently evolved feeding specialized for shearing or crushing. the iterative evolution of these morphologies is plausibly linked to ecological factors such as the development of seagrass communities and the opening of niches through extinction that occurred from the Cretaceous to the Miocene.

Research Article
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Batsch, A. J. G. C. 1788. Versuch einer Anleitung, zur Kenntniß und Geschichte der Thiere und Mineralien. Akademische Buchhandlung, Jena, 528 p.Google Scholar
Baur, G. 1893. Notes on the classification of the Cryptodira. American Naturalist, 27:672675.Google Scholar
Bjorndal, K. A. 1997. Foraging ecology and nutrition of sea turtles, p. 199231. In Lutz, P. L. and Musickk, J.A. (eds.), The Biology of Sea Turtles. CRC Press, Boca Raton.Google Scholar
Bonaparte, C. L. 1832. Saggio d'una Distribuzione Metodica degli Animali Vertebrati a Sangue Freddo. Antonio Boulzaler, Roma, 36 p.Google Scholar
Brinkman, D., Aquillon-Martinez, M. C., De Leon Dávila, C. A., Jamniczky, H., Eberth, D. A., and Colbert, M.. 2009. Euclastes coahuilaensis sp. nov., a basal cheloniid turtle from the late Campanian Cerro del Pueblo Formation of Coahuila State, Mexico. PaleoBios, 28:7688.Google Scholar
Brinkman, D., Hart, M., Jamniczky, H., and Colbert, M.. 2006. Nichollsemys baieri gen. et. sp. nov., a primitive chelonioids turtle from the late Campanian of North America. Paludicola, 5:111124.Google Scholar
Casier, E. 1968. Le squelette cephalique de Eochelone brabantica L. Dollo, du Bruxellien (Lutetien Inférieur) de Belgique, et sa comparison avec de Chelone mydas Linné. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 44:122.Google Scholar
Claude, J., Pritchard, P. C. H., Tong, H., Paradis, E., and Auffray, J.-C.. Ecological correlates and evolutionary divergence in the skull of turtles: a geometric morphometric assessment. Systematic Biology, 53:937952.Google Scholar
Cope, E. D. 1867. On Euclastes, a genus of extinct Cheloniidae. Proceedings of the Natural Academy of Sciences of Philadelphia, 1867:41.Google Scholar
Cope, E. D. 1868. On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia, 1868:242300.Google Scholar
Cope, E. D. 1869. Synopsis of the extinct Reptilia found in the Mesozoic and Tertiary strata of New Jersey, p. 733738. In Cook, G. H. (ed.), Geology of New Jersey. New Jersey Geological Survey, Trenton.Google Scholar
Cope, E. D. 1870. Synopsis of the extinct Batrachia, Reptilia and Aves of North America, Pt. I. Transactions of the American Philosophical Society, 14:1252.CrossRefGoogle Scholar
Cope, E. D. 1872. On the geology and paleontology of the Cretaceous strata of Kansas. U.S. Geological Survey, 5:318349.Google Scholar
Cope, E. D. 1873. Toxochelys latiremis. Proceedings of Natural Sciences, Philadelphia, 1873:10.Google Scholar
Dalrymple, G. H. 1977. Intraspecific variation in the cranial feeding mechanism of turtles of the genus Trionyx (Reptilia, Testudines, Trionychidae). Journal of Herpetology, 11:255285.CrossRefGoogle Scholar
De Muizon, C. 1988, Les Vertébrés fossiles de la Formation Pisco (Pérou), III. Les Odontocètes (Cetacea, Mammalia) du Miocène. Editions Recherches sur les Civilisations, 78:1244.Google Scholar
De Muizon, C. and Devries, T. J.. 1985. Geology and paleontology of late Cenozoic marine deposits in the Sacaco area (Peru). Geologische Rundschau, 74:547563.CrossRefGoogle Scholar
Devries, T. J. 1998, Oligocene deposition and Cenozoic sequence boundaries in the Pisco Basin (Peru). Journal of South American Earth Sciences, 11:217231.CrossRefGoogle Scholar
Devries, T. J. 2007. Cenozoic Turritellidae (Gastropoda) from southern Peru. Journal of Paleontology, 81:331351.CrossRefGoogle Scholar
Dodd, C. K. and Morgan, G. S.. 1992. Fossil Sea turtles from the early Pliocene Bone Valley Formation, Central Florida. Journal of Herpetology, 26:18.CrossRefGoogle Scholar
Dollo, L. 1886. Première note sur les chéloniens du Bruxelliens (Eócène moyen) de la Belgique. Bulletin du Museé Royal d'Histoire Naturelle de Belgique, 4:7596.Google Scholar
Dollo, L. 1887. On some Belgian Fossil Reptiles. Geological Magazine, 4:392396.CrossRefGoogle Scholar
Dollo, L. 1888. On the humerus of Euclastes. Geological Magazine, 5:261267.CrossRefGoogle Scholar
Dollo, L. 1903. Eochelone brabantica, tortue marine nouvelle du Bruxellien (Éocène moyen) de la Belgique et l'évolution de chéloniens marins. Bulletin du Academie Sceiences de Belgique, 1903:792801.Google Scholar
Dutton, P. H., Davis, S. K., Guerra, T., and Owens, D.. 1996. Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA. Molecular Phylogenetic and Evolution, 5:511521.CrossRefGoogle ScholarPubMed
Eschscholtz, J. F. von. 1829. Zoologischer Atlas, enthaltend Abbildungen und Beschreibungen neuer Thierarten, während des Flottcapitains von Kotzebue zweiter Reise um die Welt, auf Russich-Kaiserlich Kreigsschupp Predpriaetë in den Jahren 1823–1826. G. Reimer, Berlin, 17 p.Google Scholar
Fastovsky, D. E. 1985. A skull of the Cretaceous chelonioid turtle Osteopygis and the classification of the Osteopyginae. New Jersey State Museum Investigation, 3:127.Google Scholar
Foster, D. E. 1980. Osteopygis sp., a marine turtle from the Late Cretaceous Moreno Formation of California. PaleoBios, 34:115.Google Scholar
FuenteM., de la M., de la and Casadío, S.. 2000. Un nuevo osteopigino (Chelonii: Cryptodira) de la Formación Roca (Paleoceno Inferior) de Cerros Bayos, Provincia de La Pampa, Argentina. Ameghiniana, 37:235246.Google Scholar
Fitzinger, L. 1843. Systema Reptilium. Braumüller and Seidel, Vindobona, 106 p.Google Scholar
Gaffney, E. S. and Meylan, P. A.. 1988. A phylogeny of turtles, p. 157219. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods, Volume 1, Amphibians, Reptiles, Birds. Clarendon Press, Oxford.Google Scholar
Garman, S. 1880. On certain species of Chelonioidae. Bulletin of the Museum of Comparative Zoology, 6:123126.Google Scholar
Germar, E. F. 1824. Insectorum species novae aut minue cognitae, descriptionibus illustratae, Volume I. Hendel, Halae, 624 p.CrossRefGoogle Scholar
Gray, J. E. 1825. A synopsis of the genera of reptiles and amphibia, with a description of some new species. Annals of Philosophy, 10:193217.Google Scholar
Gray, J. E. 1831. Synopsis Reptilium, Pt. 1, Cataphracta. Tortoises, Crocodiles, Enaliosaurians. Treuttel, Wurtz, London, 85 p.Google Scholar
Ham, R. W. J. M. van der, Van Konijnenburg-Van Citter, J. H. A., Indeherberge, L.. 2007. Seagrass foliage from the Maastrichtian type area (Maastricthian, Danian, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology, 144:301321.Google Scholar
Hasegawa, Y., Hirayama, R., Kimura, T., Takakuwa, Y., Nakajima, H., and Club, Gunma Fossil. 2005. Skeletal restoration of fossil sea turtle, Syllomus, from the Middle Miocene Tomioka Group, Gunma Prefecture, Central Japan. Bulletin of the Gunma Museum of Natural History, 9:2964.Google Scholar
Hay, O. P. 1905. A revision of the species of the family of fossil turtles called Toxochelyidae, with descriptions of two new species of Toxochelys and a new species of Porthochelys. Bulletin of the American Museum of Natural History, 21:177185.Google Scholar
Hay, O. P. 1908. The fossil Turtles of North America. Carnegie Institution of Washington, Washington D.C., 568 p.Google Scholar
Hirayama, R. 1994. Phylogenetic systematics of chelonioid sea turtles. Island Arc, 3:270284.CrossRefGoogle Scholar
Hirayama, R. 1997. Distribution and diversity of Cretaceous chelonioids, p. 225241. In Callaway, J. M. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego, 501 p.CrossRefGoogle Scholar
Hirayama, R. 1998. Oldest known sea turtle. Nature, 392:705708.CrossRefGoogle Scholar
Hirayama, R. 2005. Skeletal restoration of a fossil sea turtle, Syllomus, from the Middle Miocene Haratajino Formation, Tomioka Group, Gunma Prefecture, central Japan. Bulletin of Gunma Museum of Natural History, 9:2964.Google Scholar
Hirayama, R. and Chitoku, T.. 1996. Family Dermochelyidae (superfamily Chelonioidea) from the Upper Cretaceous of North Japan. Transactions and Proceedings of the Palaeontological Society of Japan, 184:597622.Google Scholar
Hirayama, R. and Tong, H.-Y.. 2003. Osteopygis (Testudines: Cheloniidae) from the lower Tertiary of the Ouled Abdoun Phosphate basin, Morocco. Palaeontology, 46:845856.CrossRefGoogle Scholar
Jalil, N.-E., de Lapparent de Broin, F., Bardet, N., Vacant, R., Bouya, B., Amaghzaz, M., and Meslouh, S.. In press. Euclastes acutirostris, a new species of littoral turtle (Cryptodira, Cheloniidae) from the Paleocene phosphates of Morocco (Oulad Abdoun Basin, Danian-Thanetian). Comptes Rendus Palevol [available online].Google Scholar
Joyce, W. G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 47:3102.CrossRefGoogle Scholar
Joyce, W. G., Parham, J. F., and Gauthier, J. A.. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology, 78:9891013.2.0.CO;2>CrossRefGoogle Scholar
Karl, H. V., Tichy, G., and Ruschak, H.. 1998. Osteopygoides priscus n. gen. n. sp. und die Taxonomie und Evolution der Osteopygidae (Testudines: Chelonioidea). Mitteilungen der Geologischen und Palaontologischen Landesmuseum Joanneum, 56:329350.Google Scholar
Kear, B. P. and Lee, M. S. Y.. 2006. A primitive protostegid from Australia and early sea turtle evolution. Biology Letters, 2:116119.CrossRefGoogle ScholarPubMed
König, C. D. E. 1825. Icones fossilium sectiles. Centuria Prima, London, 4 p.CrossRefGoogle Scholar
Laurenti, J. N. 1768. Specimen Medicum, Exhibens Synopsin [sic] Reptilium Emendatam cum Experimentis circa Venena et Antidota Reptilium Austriacorum. Trattnern, Vienna, 215 p.CrossRefGoogle Scholar
Leidy, J. 1851. [Report of December 16th]. Proceedings of the Academy of Natural Sciences of Philadelphia, 5:329331.Google Scholar
Lindeman, P. 2000. Evolution of the relative width of the head and alveolar surfaces in map turtles (Testudines: Emydidae: Graptemys). Biological Journal of the Linnaean Society, 69:549576.Google Scholar
Linnaeus, C. 1758. Systema Naturae, Volume 1 (tenth edition). Laurentius Salvius, Holmia, 824 p.Google Scholar
Linnaeus, C. 1766. Systema Naturae, Volume 1 (twelfth edition). Laurentius Salvius, Holmia, 532 p.Google Scholar
Lydekker, R. 1889a. Preliminary notice of new fossil Chelonia. Annals and Magazine of Natural History, Including Zoology, Botany and Geology, 3:5354.CrossRefGoogle Scholar
Lydekker, R. 1889b. On the remains of Eocene and Mesozoic Chelonia and a tooth of (?)Ornithopsis. Quarterly Journal of the Geological Society of London, 45:227246.CrossRefGoogle Scholar
Lydekker, R. 1889c. Catalogue of the Fossil Reptilia and Amphibia in the British Museum (Natural History), Pt. 3, Chelonia. Longmans, London, 239 p.Google Scholar
Lynch, S. C. and Parham, J. F.. 2003. The first report of hard-shelled sea turtles (Cheloniidae sensu lato) from the Miocene of California, including a new species (Euclastes hutchisoni) with unusually plesiomorphic characters. PaleoBios, 23:2135.Google Scholar
Matzke, A. T. 2007. An almost complete juvenile specimen of the cheloniid turtle Ctenochelys stenoporus (Hay, 1905) from the upper Cretaceous Niobrara Formation of Kansas, USA. Palaeontology, 50:669691.CrossRefGoogle Scholar
Moody, R. T. J. 1970. A revision of the taxonomy and morphology of certain Eocene Cheloniidae. Unpublished , , 307 p.Google Scholar
Moody, R. T. J. 1974. The taxonomy and morphology of Puppigerus camperi (Gray), an Eocene sea-turtle from northern Europe. Bulletin of the British Museum (Natural History) Geology, 25:153186.Google Scholar
Naro-Maciel, E., Le, M., Fitzsimmons, N. N., and Amato, G.. 2008. Evolutionary relationships of marine turtles: A molecular phylogeny based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 49:659662.CrossRefGoogle ScholarPubMed
Nicholls, E. 1988. New material of Toxochelys latiremis Cope, and a revision of the genus Toxochelys (Testudines, Chelonioidea). Journal of Vertebrate Paleontology, 8:181187.CrossRefGoogle Scholar
Owen, R. 1842. Report on British fossil reptiles, Pt. II, p. 60204. In Murray, J. (ed.), Report of the Eleventh Meeting of the British Association for the Advancement of Science; Held at Plymouth in July 1841. Richard and John E. Taylor, London.Google Scholar
Owen, R. 1849. A History of British Fossil Reptiles, Pt. 1. Chelonia. The Palaeontographical Society, London, 79 p.Google Scholar
Owen, R. and Bell, T.. 1849. Monograph on the fossil Reptilia of the London Clay, and of the Bracklesham and other Tertiary beds, Pt. I. Chelonia. Palaeontographical Society Monographs, 2:176.Google Scholar
Parham, J. F. 2005. A reassessment of the referral of sea turtle skulls to the genus Osteopygis (Late Cretaceous, New Jersey, USA). Journal of Vertebrate Paleontology, 25:7177.CrossRefGoogle Scholar
Parham, J. F. and Fastovsky, D. E.. 1997. The phylogeny of cheloniid sea turtles revisited. Chelonian Conservation and Biology, 2:548554.Google Scholar
Parham, J. F. and Hutchison, J. H.. 2003. A new eucryptodiran turtle from the Late Cretaceous of North America (Dinosaur Provincial Park, Alberta, Canada). Journal of Vertebrate Paleontology, 23:783798.CrossRefGoogle Scholar
Pyenson, N. D., Irmis, R. B., Lipps, J. H., Barnes, L. G., Mitchell, E. D. Jr., and McLeod, S. A.. 2009. The origin of a widespread marine bonebed deposited during the Middle Miocene Climatic Optimum. Geology, 37:519522.CrossRefGoogle Scholar
Rafinesque, C. S. 1810. Caratteri di alcuni Nouvi Generi e Nouve Specie di Animali e Piante della Sicilia con varie Osservazioni sopra i Medesimi. Sanfilippo, Palermo, 105 p.CrossRefGoogle Scholar
Rafinesque, C. S. 1814. Prodrono di erpetologia siciliana. Specchio delle Scienze o Giornale Enciclopedico di Sicilia, 2:6566.Google Scholar
Reichenbach, H. G. G. 1849. Avium systema naturale. Das natürliche System der Vögel. Hofmeister, Dresden and Leipzig, 510 p.Google Scholar
Seeley, H. G. 1871. Note on some chelonian remains from the London Clay. Annual Magazine of Natural History, 8:234237.Google Scholar
Sugarman, P. J., Miller, K. G., Owens, J. P., and Feigenson, M. D.. 1993. Strontium isotope and sequence stratigraphy of the Kirkwood Formation, southern New Jersey. Geological Society of America Bulletin, 105:423436.2.3.CO;2>CrossRefGoogle Scholar
Swofford, D. L. 2002. PAUP* v.4.0b10. Sinauer Associates, Sunderland.Google Scholar
Valkenburgh, B. van, 2007. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 47:147163.CrossRefGoogle ScholarPubMed
Vandellius, D. 1761. Epistola de holothurio, et testudine coriacea ad celeberrimum Carolum Linnaeum equitem naturae curiosorum dioscoridem II. Conzatti, Patavius, 12 p.Google Scholar
Walker, W. E. 1973. The locomotor apparatus of Testudines. In Gans, C. and Parsons, T. S. (eds.), Biology of the Reptilia, Volume 4. Academic Press, New York.Google Scholar
Weems, R. E. 1974. Middle Miocene sea turtles (Syllomus, Procolpochelys, Psephophorus) from the Calvert Formation. Journal of Paleontology, 48:278303.Google Scholar
Weems, R. E. 1980. Syllomus aegyptiacus, a Miocene pseudodont sea turtle. Copeia 1980:621625.CrossRefGoogle Scholar
Weems, R. E. 1988. Paleocene turtles from the Aquia and Brightseat formations, with a discussion of their bearing on sea turtle evolution and phylogeny. Proceedings of the Biological Society of Washington, 101:109145.Google Scholar
Williams, E. E. 1950. Variation and selection of the cervical central articulations of living turtles. Bulletin of the American Museum of Natural History, 94:505562.Google Scholar
Wyneken, J. 2001. The Anatomy of Sea Turtles. U.S. Department of Commerce NOAA Technical Memorandum NMFS-SEFSC 470, 172 p.Google Scholar
Zangerl, R. 1953. The vertebrate fauna of the Selma Formation of Alabama. Part IV. The turtles of the family Toxochelyidae. Fieldiana: Geology Memoirs, 3:135277.Google Scholar
Zangerl, R. 1958. Die oligozanen meerschildkroten von Glarus. Schweizerische Palaeontologische Abhandlungen, 73:156.Google Scholar
Zangerl, R. 1971. Two toxochelyid sea turtles from the Landenian sands of Erquelinnes (Hainaut), of Belgium. Institut Royal des Sciences Naturelles de Belgique, Memoirs, 169:132.Google Scholar
Zangerl, R. 1980. Patterns of phylogenetic differentiation in the toxochelyid and cheloniid sea turtles. American Zoologist, 20:585596.CrossRefGoogle Scholar
Zug, G. R. 2001. Turtles of the Lee Creek mine (Pliocene: North Carolina). Smithsonian Contributions to Paleobiology 90:203218.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New sea turtle from the Miocene of Peru and the iterative evolution of feeding ecomorphologies since the Cretaceous
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

New sea turtle from the Miocene of Peru and the iterative evolution of feeding ecomorphologies since the Cretaceous
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

New sea turtle from the Miocene of Peru and the iterative evolution of feeding ecomorphologies since the Cretaceous
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *