Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-6pkmb Total loading time: 1.04 Render date: 2023-02-08T21:18:08.952Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

South American giant short-faced bear (Arctotherium angustidens) diet: evidence from pathology, morphology, stable isotopes, and biomechanics

Published online by Cambridge University Press:  14 July 2015

Leopoldo H. Soibelzon
Affiliation:
Departamento Científico Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque, La Plata B1900FWA, Argentina.
Gustavo A. Grinspan
Affiliation:
Núcleo de Biomecánica, Espacio Interdisciplinario, Universidad de la República, Rodó 1843, Montevideo 11200, Uruguay
Hervé Bocherens
Affiliation:
Department of Geosciences, Biogeology, University Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
Walter G. Acosta
Affiliation:
Cátedra de Semiología, facultad de ciencias Veterinarias Universidad Nacional de La Plata. La Plata, Argentina
Washington Jones
Affiliation:
Núcleo de Biomecánica, Espacio Interdisciplinario, Universidad de la República, Rodó 1843, Montevideo 11200, Uruguay
Ernesto R. Blanco
Affiliation:
Instituto de Física, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay
Francisco Prevosti
Affiliation:
División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”-CONICET, Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina

Abstract

Arctotherium angustidens Gervais and Ameghino, 1880 (the South American giant short-faced bear) is known for being the earliest (Ensenadan Age, early to middle Pleistocene) and largest (body mass over 1 ton) of five described Arctotherium species endemic to South America. Here we assess the diet of this bear from multiple proxies: morphology, biomechanics, dental pathology, stable isotopes and a previous study using geometric morphometric methodology. Results favor the idea of animal matter consumption, probably from large vertebrates in addition to vegetable matter consumption. Most probably, active hunting was not the unique strategy of this bear for feeding, since its large size and great power may have allowed him to fight for the prey hunted by other Pleistocene carnivores. However, scavenging over mega mammal carcasses was probably another frequent way of feeding. South American short-faced bears adjusted their size and modified their diet through Pleistocene times, probably as a response to the diversification of the carnivore guild (from the few precursory taxa that crossed the Panamanian Isthmus during the Great American Biotic Interchange).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. Mc, N. 1981. Factors of safety in the structure of animals. Science Progress, 67:109130.Google ScholarPubMed
Ameghino, C. 1916a. La fórmula dentaria del género Arctotherium . Physis, 2:285286.Google Scholar
Ameghino, C. 1916b. Sobre la dentadura superior de Arctotherium en edad juvenil. Physis, 2:435437.Google Scholar
Ameghino, F. 1885. Nuevos restos de mamíferos fósiles oligocenos, recogidos por el profesor Pedro Scalabrini y pertenecientes al Museo provincial de la ciudad de Paraná. Boletín de la Academia de Ciencias de Córdoba, 8:3207.Google Scholar
Ameghino, F. 1887. Enumeración sistemática de las especies de mamíferos fósiles coleccionados por Carlos Ameghino en los terrenos eocenos de Patagonia Austral y depositados en el Museo de La Plata. Boletín del Museo de La Plata, p. 126.Google Scholar
Ameghino, F. 1891. Caracteres diagnósticos de cincuenta especies nuevas de mamíferos fósiles de la República Argentina. Revista Argentina de Historia Natural, 1:129167.Google Scholar
Ameghino, F. 1902. Notas sobre algunos mamíferos fósiles nuevos o poco conocidos del valle de Tarija. Anales del Museo Nacional Buenos Aires, 3:225261.Google Scholar
Baryshnikov, G. 1997. Cave bears from the Paleolithic of the Greater Caucasus, p. 69118. In Saunders, J. J., Styles, B. W. and Baryshnikov, G. (eds.), Quaternary Paleozoology in the Northern Hemisphere. Scientific papers of the Illinois State Museum, Springfield, Illinois.Google Scholar
Binder, W. J., Thompson, E. N., and Van Valkenburgh, B. 2002. Temporal variation in tooth fracture among Rancho La Brea Dire wolves. Journal of Vertebrate Paleontology, 22:423428.CrossRefGoogle Scholar
Blanco, R. E., Jones, W. W., and Grinspan, G. A. 2011. Fossil marsupial predators of South America (Marsupialia, Borhyaenoidea): bite mechanics and palaeobiological implications. Alcheringa, 35:377387.CrossRefGoogle Scholar
Bocherens, H. 2000. Preservation of isotopic signals (13C, 15N) in Pleistocene mammals, p. 6588. In Katzenberg, M. A. and Ambrose, S. H. (eds.), Biogeochemical Approaches to Paleodietary Analyses. Kluwer Academic/Plenum Publishers New York.Google Scholar
Bocherens, H., Fizet, M., and Mariotti, A. 1994. Diet, physiology and ecology of fossil mammals as inferred by stable carbon and nitrogen isotopes biogeochemistry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology, 107:213225.CrossRefGoogle Scholar
Bocherens, H., Emslie, S., Billiou, D., and Mariotti, A. 1995a. Stable isotopes (C13, N15) and paleodiet of giant short-faced bear ( Arctodus simus ). Comptes Rendus de l'Académie des sciences Paris, 320:779784.Google Scholar
Bocherens, H., Fogel, M. L., Tuross, N., and Zeder, M. 1995b. Trophic structure and climatic information from isotopic signatures in a Pleistocene cave fauna of Southern England. Journal of Archaeological Science, 22:327340.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., and Jaeger, J. J. 1996. Isotopic biogeochemistry (13C, 18O) of mammal enamel from African Pleistocene hominid sites: implications for the preservation of paleoclimatic isotopic signals. PALAIOS, 11:306318.CrossRefGoogle Scholar
Bocherens, H., Drucker, D. G., Billiou, D., Geneste, J.-M., and van der Plicht, J. 2006. Bears and humans in Chauvet Cave (Vallon-Pont-d'Arc, Ardèche, France): insights from stable isotops and radiocarbon dating of bone collogen. Journal of Human Evolution, 50:370376.CrossRefGoogle Scholar
Bocherens, H., Sandrock, O., Kullmer, O., and Schrenk, F. 2011. Hominin palaeoecology in late Pliocene Malawi: insights from isotopes (13C, 18O) in mammal teeth. South African Journal of Science, 107:95100.CrossRefGoogle Scholar
Burmeister, H. 1879. Description physique de la République Argentine d' prés des observationes personelles et étrangéres. Traduit de l'allemand avec le concourse de E. Daireaux. Tome troisiéme: Animaux vertébrés. Premiére partie: Mammiféres vivants et éteints. Buenos Aires, 3 (1):1556, with atlas.Google Scholar
Castellanos, A. 2006. Cannibalism in Andean Bears? International Bear News, Quarterly Newsletters of the International Association for Bear Research and Management (IBA) and the IUCN/SSC Bear Specialist Group, 15 (4):20.Google Scholar
Castellanos, A. 2011. Do Andean Bears attack Mountain Tapirs? International Bear News, 20:4142.Google Scholar
Castellanos, A. X. and Laguna, A. 2012. Depredación a ganado vacuno y mamíferos silvestres por oso andino en el norte de ecuador.X Congreso Internacional de Manejo de Fauna Silvestre en la Amazonía y Latinoamérica. Salta, Abstracts (electronic version without pagination).Google Scholar
Christiansen, P. 2007. Evolutionary implications of bite mechanics and feeding ecology in bears. Journal of Zoology, 272:423443.CrossRefGoogle Scholar
Christiansen, P. and Wroe, S. 2007. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88:347358.CrossRefGoogle ScholarPubMed
Cione, A., Tonni, E. P., and Soibelzon, L.H. 2009. Did humans cause mammal late Pleistocene–Holocene extinction in South America in a context of shrinking open areas?, p. 125143. In Haynes, G. (ed.), American Megafaunal Extinctions at the End of the Pleistocene, Springer Publishers, Vertebrate Paleobiology and Paleontology Series, U.S.A.Google Scholar
Clementz, M. T., Fox-Dobbs, K., Wheatly, P. V., Koch, P. L., and Doak, D. F. 2009. Revisiting old bones: coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geological Journal, 44:605620.CrossRefGoogle Scholar
Close, R. I. 1972. Dynamic properties of mammalian skeletal muscles. Physiological Reviews, 52:129197.CrossRefGoogle ScholarPubMed
Cope, E. D. 1879. The cave bear of California. American Naturalist, 13:791.Google Scholar
Cope, E. D. 1880. On the extinct cats of America. American Naturalist, 14:833858.CrossRefGoogle Scholar
Cuvier, F. G. 1825. Tremarctos ornatus . In Geoffroy Saint-Hilaire, E. and Cuvier, F. G. (eds.), Histoire Naturelle des Mammiferes, vol. 3, p. 50.Google Scholar
David, A. 1869. Etrait d'une lettre du mme, dateé de la Principaute Thibetaine (independente) de Mou-pin, le 21 Mars 1869. Nouv Arch Museum Histoire Naturelle de Paris, Bulletin, 5:1213.Google Scholar
Davis, D. D. 1964. The giant panda. A morphological study of evolutionary mechanism. Fieldiana-Zool., Mem., Chicago Museum of Natural History, 3:1399.Google Scholar
Del Moral Sachetti, F. J., Zenteno Cardenas, R., and Lameda Camacaro, F. I. 2009. Análisis biostático de las tensiones actuantes en el dentario del oso andino (Tremarctos ornatus) durante la mordedura. Acta Zool Mexicana 25:551567.Google Scholar
Ecker, M. 2011. Stable Isotope Analyses on the Fauna from Payre (Ardèche, France). MS Thesis, University of Tuebingen.Google Scholar
Ecker, M., Bocherens, H., Julien, M. A., Rivals, F., Raynal, J. P., and Moncel, M. H. 2013. Middle Pleistocene ecology and Neanderthal subsistence: insights from stable isotope analyses in Payre (Ardèche, France). Journal of Human Evolution, 65:363373.CrossRefGoogle Scholar
Elbroch, M. 2006. Animal Skulls: A Guide to North American Species. Stackpole Books, 740 p.Google Scholar
Feranec, R., García, N., Díez, J. C., and Arsuaga, J. L. 2010. Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba cave (Burgos, northern Spain) through stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297:263272.CrossRefGoogle Scholar
Ferigolo, J. 1992. Non-human vertebrate paleopathology of some Brazilian Pleistocene mammals, p. 213234. In Araujo, A. J. G. and Ferreira, L. F. (eds.), Paleopatologia and Paleoepidemiologia-Estudos Multidisciplinares. Rio de Janeiro, Panorama/Escola Nacional de Saude Publica.Google Scholar
Ferigolo, J. and Berman, W. D. 1993. Dental paleopatology and Paleodiet of Arctotherium bonariensis (Mammalia, Carnivora, Ursidae) from the Ensenadan (lower to middle Pleistocene), Buenos Aires Province, Argentina. Congresso Brasileiro de Paleontologia, Sao Leopoldo, Abstracts, 13.Google Scholar
Figueirido, B. and Soibelzon, L. H. 2009. Inferring paleoecology in extinct tremarctine bears (Carnivora, Ursidae) via geometric morphometrics. Lethaia, 43:209222.CrossRefGoogle Scholar
Galasso, L. 2002. The spectacled bear's impact on livestock and crops and use of remnant forest fruit trees in an human altered landscape in Ecuador. MS Thesis, University of Wisconsin, Madison.Google Scholar
Garcia Garcia, N. R., Feranec, S., Arsuaga, J. L., Bermúdez de Castro, J. M., and Carbonell, E. 2009. Isotopic analysis of the ecology of herbivores and carnivores from the middle Pleistocene deposits of the Sierra De Atapuerca, northern Spain. Journal of Archaeological Science, 36:1,1421,151.CrossRefGoogle Scholar
Garshelis, D. L. 2009. Family Ursidae (Bears), p. 448497. In Wilson, D. E. and Mittermeier, R. A. (eds.), Handbook of the Mammals of the World, Vol. 1, Carnivores. Barcelona, Lynx Editions.Google Scholar
Gervais, P. 1848 –1852. Zoologie et Paleontologie francaises (animaux vertébrés) ou nouvelles recherches sur les animaux vivantes et fossiles de la France, A. Bertrand, Paris, 271 p.CrossRefGoogle Scholar
Gervais, P. 1873. Mémoire sur plusieurs espéces de mammiféres fossiles propres á l' Amerique méridionale. Mémoires de la Société géologique de France, (2) IX (5):144.Google Scholar
Gervais, H. and Ameghino, F. 1880. Los Mamíferos Fósiles de la América del Sur. Salbi e Igon. París and Buenos Aires, 225 p.Google Scholar
Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J., and Castellanos, A. 2006. Andean bear-livestock conflicts: a review. Ursus, 17:815.CrossRefGoogle Scholar
Koby, F. E. 1940. Les usures séniles des canines d'Ursus spelaeus et al préhistoire. Verhandlungen der naturforschenden Gesellschaft in Basel, 51:7695.Google Scholar
Koby, F. E. 1953. Modifications que les ours des cavernes ont fait subir à leur habitat. Premier Congrès International de Spéléologie, 4:1527.Google Scholar
Kurtén, B. 1966. Pleistocene bears of North America: 1 Genus Tremarctos, spectacled bears. Acta Zoologica Fennica, 115:1120.Google Scholar
Kurtén, B. 1976. The cave bear story. Columbia University, New York, New York, U.S.A., 163 p.Google Scholar
Laguna, A. A. 2011a. Metodología para el estudio de depredación a ganado por el oso andino (tremarctos ornatus) en los andes nororientales del ecuador. I Congreso Ecuatoriano de Mastozoología, Abstracts, 1:197.Google Scholar
Laguna, A. A. 2011b. Resultados preliminares del conflicto hombre-oso en el norte de Ecuador. Actas del I Congreso Ecuatoriano de Mastozoología, p. 198.Google Scholar
Laguna, A. A. and Castellanos, A. X. 2012. Uso de trampas cámara para la identificación de osos andinos (Tremarctos ornatus) residentes y predadores de ganado en los Andes nororientales del Ecuador. X Congreso Internacional de Manejo de Fauna Silvestre en la Amazonía y Latinoamérica. Salta, Abstracts (electronic version without pagination).Google Scholar
Leidy, J. 1858. Notice of remains of extinct Vertebrata, from the Valley of the Niobrara River, collected during the exploring expedition of 1857, in Nebraska, under the command of Lieut. G. K. Warren, U. S. Top. Eng., by Dr. F. V. Hayden, geologist of the Expedition. Proceedings of the Academy of Natural Sciences, 1858: 2029.Google Scholar
Lund, P. W. 1842. Blik paa Brasiliens Dyreverden för sidste jordomvaeltning. Fjerde Afhandling: Fortsaettelse af Pattedyrene. Lagoa Santa d. 30 Januar 1841. Copenhague. -K. Danske videnskabernes Selskabs naturvidenskapelige og mathematiske Afhandlinger, 9:137208.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J., and Raup, D. M. 1982. Mammalian evolution and the Great American Interchange. Science, 215:1,3511,357.CrossRefGoogle ScholarPubMed
Martin, L. D., Babiarz, J. P., Naples, V. L., and Hearst, J. 2000. Three ways to be a saber-toothed cat. Naturwissenschaften, 87:4144 CrossRefGoogle ScholarPubMed
Matson, D. J. 1998. Diet and morphology of extant and recently extinct northern bears. Ursus, 10:479496.Google Scholar
Maynard Smith, J. and Savage, R. J. G. 1959. The mechanics of mammalian jaws. School Science Review, 40:289301.Google Scholar
Mones, A. and Rinderknecht, A. 2004. The first South American Homotheriini (Mammalia: Carnivora: Felidae). Comunicaciones Paleontológicas del Museo Nacional de Historia Natural y Antropología, 35:201212.Google Scholar
Nowak, R. M. 1999. Walker's Mammals of the World. The Johns Hopkins University Press, Sixth Edition, U.S.A., 1,362 p.Google Scholar
Owen, R. 1869. On fossil teeth of equines from Central and South America, refereable to Equus conversidens, Equus tau, and Equus arcidens. Proceedings of the Royal Society of London, 17:267268.CrossRefGoogle Scholar
Pallas, P. S. 1780. Spicilegia Zoologica, quibus novae imprimis et obcurae animalium species iconibus. Berolini, Lange, G. A., 17741780. Fasicle 14, p. 5.Google Scholar
Peyton, B. 1980. Ecology, distribution and food habits of spectacled bears Tremarctos ornatus, in Peru. Journal of Mammalogist, 61:639652.CrossRefGoogle Scholar
Phipps, C. J. 1774. A voyage towards the North Pole. Journal of Nourse, London, 253 p.Google Scholar
Prevosti, F. and Soibelzon, L. H. 2012. Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective, p. 102122. In Patterson, B. D. and Costa, L. P. (eds.), Bones, Clones, and Biomes: An 80-Million Year History of Modern Neotropical Mammals. University of Chicago Press.CrossRefGoogle Scholar
Pushkina, D., Bocherens, H., Chaimanee, Y., and Jaeger, J. J. 2010. First dietary and paleoenvironmental reconstructions from the late Middle Pleistocene Snake cave in northeastern Thailand using stable carbon isotopes. Naturwissenschaften, 97:299309.CrossRefGoogle Scholar
Rafinesque, C. S. 1817. Museum of Natural Sciences. The American Monthly Magazine and Critical Review, 1:431442.Google Scholar
Riggs, E. S. 1933. Descriptions of seven new genera of North America Quadrupeds. American Monthly Magazine, 2:4446.Google Scholar
Rincón, A. D., Prevosti, F. J., and Parras, G. E. 2011. New saber-toothed cat records (Felidae–Machairodontinae) for the Pleistocene of Venezuela, and the Great American Biotic Interchange. Journal of Vertebrate Paleontology, 31:468478.CrossRefGoogle Scholar
Rodrigues, S., Bernardes, C., Soibelzon, L. H., and Avilla, L. 2012. Os carnívoros (Carnivora: Mammalia) fósseis registrados nas cavernas do sudeste do Estado do Tocantins: taxonomia, aspectos climáticos e ambientais no Pleistoceno Superior do Brasil. 6° Congreso Brasilero de Mastozoología, Corumbá, Abstracts (electronic version without pagination).Google Scholar
Rosenmüller, J. C. 1794. Quaedam de ossibus fossilibus animalis cuiusdam, historiam eius et cognitionem accuratiorem illustrantia, dissertatio, quam d. ad disputandum proposuit Ioannes Christ. Rosenmüller Heβberga-Francus, LL.AA.M. in Theatro anatomico Lipsiensi Prosector assumto socio Io. Chr. Aug. Heinroth Lips. Med. Stud. Cum tabula aenea. 34 p., 1 copperpl.; Leipzig.Google Scholar
Rothschild, B. M. and Martin, L. D. 2003. Frequency of pathology in a large natural sample from Natural Trap Cave with special remarks on erosive disease in the Pleistocene. Rheumatismo, 55:5865.Google Scholar
Sacco, T. and Van Valkenburgh, B. 2004. Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology, 263:4154.CrossRefGoogle Scholar
Serres, M. 1867. De l‘osteographie du “Mesotherium” et des affinités zoologiques. Comptes Rendus de l'Academie des Sciences, 65:841848.Google Scholar
Smith, J. B. and Dodson, P. (2003). A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology, 23:112.CrossRefGoogle Scholar
Soibelzon, L. H. 2002. Los Ursidae (Carnivora, Fissipedia) fósiles de la República Argentina. Aspectos sistemáticos y paleoecológicos. Unpublished Ph.D. Thesis, Universidad Nacional de La Plata.Google Scholar
Soibelzon, L. H. 2004. Revisión sistemática de los Tremarctinae (Carnivora, Ursidae) fósiles de América del Sur. Revista del Museo Argentino de Ciencias Naturales, 6:107133.Google Scholar
Soibelzon, L. H. 2012. Los Ursidae, Carnivora Fissipedia, fósiles de la República Argentina: aspectos sistemáticos y paleoecológicos. First edition, La Plata: Universidad Nacional de La Plata, 239 p.Google Scholar
Soibelzon, L. H. and Prevosti, F. 2007. Los carnívoros (Carnivora, mammalia) terrestres del Cuaternario de América del Sur, p. 4968. In Pons, G. X. and Vicens, D. (eds.), Geomorphologia Litoral i Quaternari. Homenatge a D. Joan Cuerda Barceló. Monografies de la Societat d'Història Natural de les Balears. Palma de Mallorca.Google Scholar
Soibelzon, L. H. and Prevosti, F. 2012. Fossils of South American Land Carnivores (Carnivora, Mammalia), p. 509530. In Ruiz, M. and Shostell, J. (eds.), Molecular Population Genetics, Evolutionary Biology and Biological Conservation of Neotropical Carnivores. Nova Science Publisher, New York.Google Scholar
Soibelzon, L. H. and Rincón, A. 2007. The fossil record of the short-faced bears (Ursidae, Tremarctinae) from Venezuela. Systematic, biogeographic, and paleoecological implications. Neues Jahrbuch für Geologie und Paläontologie, 245:287298.CrossRefGoogle Scholar
Soibelzon, L. H. and Schubert, B. W. 2011. The largest known bear, Arctotherium angustidens, from the early Pleistocene pampean region of Argentina: with a discussion of size and diet trends in bears. Journal of Paleontology, 85:6975.CrossRefGoogle Scholar
Soibelzon, L. H. and Tartarini, V. B. 2009. Estimación de la masa corporal de las especies de osos fósiles y actuales (Ursidae, Tremarctinae) de América del Sur. Revista Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, 11:243254.CrossRefGoogle Scholar
Soibelzon, L. H., Pomi, L. M., Tonni, E. P., Rodriguez, S., and Dondas, A. 2009. First Report of a short-faced bears' den (Arctotherium angustidens). Palaeobiological and palaeoecological implications. Alcheringa, 33:211222.CrossRefGoogle Scholar
Soibelzon, L. H., Tonni, E. P., and Bond, M. 2005. The fossil record of South American short-faced bears (Ursidae, Tremarctinae). Journal of South American Earth Sciences, 20:105113.CrossRefGoogle Scholar
Stiner, M. C., Achyuthagn, H., Rsebufk, A., Howells, C., Josephs, K., Juell, J., Pigatai, N. D., and Quade, J. 1998. Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of middle Pleistocenebears from Yarimburgaz Cave, Turkey. Paleobiology, 24:7498.CrossRefGoogle Scholar
Therrien, F. 2005a. Mandibular force profiles of extant carnivorans and implication for the feeding behaviour of extinct predators. Journal of Zoology, London, 267:249270.CrossRefGoogle Scholar
Therrien, F. 2005b. Feeding behaviour and bite force of sabretoothed predators. Zoological Journal of the Linnean Society, 145:393426.CrossRefGoogle Scholar
Thomason, J. J. 1991. Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoolology, 69:2,3262,333.CrossRefGoogle Scholar
Torres, T. 1988. Osos (Mammalia, Carnivora, Ursidae) del Pleistoceno de la Península Ibérica. Publicación especial del Boletín Geológico y Minero, Instituto Geológico y Minero de España XCIX, p. 1316.Google Scholar
Valkenburgh, B. Van. 1988. Incidence of tooth breakage among large, predatory mammals. The American Naturalist, 131:291301.CrossRefGoogle Scholar
Valkenburgh, B. Van and Hertel, F. 1993. Tough times at La Brea: tooth breakage in large carnivores of the late Pleistocene. Science, 261:456459.CrossRefGoogle Scholar
Voorhies, M. R. and Corner, R. G. 1982, Ice age superpredators: University of Nebraska State Museum, Museum Notes, 70:14.Google Scholar
Woodburne, M., Cione, A. L., and Tonni, E. P. 2006. Central American Provincialism and the Great American Biotic Interchange, p. 73101. In Carranza-Castañeda, O. and Lindsay, E. H. (eds.), Advances in Late Tertiary Vertebrate Paleontology in Mexico and the Great American Biotic Interchange. Publicación Especial del Instituto de Geología y Centro de Geociencias de la Universidad Nacional Autónoma de México, Mexico.Google Scholar
Wroe, S., McHenry, C., and Thomason, J. J. 2005. Bite club: comparative biteforce in big biting mammals and the prediction of predatory behavior in fossil taxa. Proceedings of the Royal Society of London, Series B, 272:619625.CrossRefGoogle Scholar
13
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

South American giant short-faced bear (Arctotherium angustidens) diet: evidence from pathology, morphology, stable isotopes, and biomechanics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

South American giant short-faced bear (Arctotherium angustidens) diet: evidence from pathology, morphology, stable isotopes, and biomechanics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

South American giant short-faced bear (Arctotherium angustidens) diet: evidence from pathology, morphology, stable isotopes, and biomechanics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *