Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T05:58:53.984Z Has data issue: false hasContentIssue false

Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China

Published online by Cambridge University Press:  14 July 2015

Bing Shen*
Affiliation:
1Department of Geosciences, Virginia Polytechnic Institutes and State University, Blacksburg, Virginia 24061,
Shuhai Xiao
Affiliation:
1Department of Geosciences, Virginia Polytechnic Institutes and State University, Blacksburg, Virginia 24061,
Chuanming Zhou
Affiliation:
2State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Xunlai Yuan
Affiliation:
2State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
*
Current address: Department of Earth Science, Rice University, Houston, Texas 77005

Abstract

Very few macroscopic soft-bodied Ediacaran fossils are hosted in carbonates; most of them are preserved as casts and molds in siliciclastic rocks or as carbonaceous compressions in black shales. This taphonomic bias limits our capability to fully understand the diversity and paleoecology of macroscopic Ediacaran life forms. Previous reports have shown that the upper Ediacaran Dengying Formation in South China and Khatyspyt Formation in Siberia contain macroscopic soft-bodied fossils preserved in bituminous limestone; thus they have the potential to expand our knowledge about the Ediacaran biosphere. However, the biogenecity of the Dengying fossils described in Xiao et al. (2005) has been questioned. In this paper, we provide additional material and arguments in support of the biogenecity of these fossils, which are formally described as Yangtziramulus zhangi new genus and species. Yangtziramulus zhangi consists of a branching system with a central axis and tubes on both sides. The tubes appear to be distally open. Yangtziramulus zhangi is interpreted as a flat-lying benthic organism, as indicated by the mutual avoidance relationship among densely clustered individuals. Yangtziramulus zhangi finds few morphological analogs among modern organisms, but it is broadly similar to several macroscopic Ediacaran forms. Its morphological and ecological complexity is inconsistent with a microbial interpretation. Yangtziramulus zhangi is typically covered by a thin veneer of fine-grained silts, suggesting that it was probably smothered and killed by an episodic flux of silty sediments (event deposits). Its tube walls are replaced with early diagenetic calcspars.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antcliffe, J. B. and Brasier, M. D. 2007a. Charnia and sea pens are poles apart. Journal of the Geological Society, London, 164:4951.CrossRefGoogle Scholar
Antcliffe, J. B. and Brasier, M. D. 2007b. Towards a morphospace for the Ediacara biota, p. 377386. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Vol. 286. Geological Society Special Publications, London.Google Scholar
Antcliffe, J. B. and Brasier, M. D. 2008. Charnia at 50: Development models for Ediacaran fronds. Palaeontology, 51:1126.CrossRefGoogle Scholar
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., Newall, M. J., and Allen, P. A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307:10971145.CrossRefGoogle Scholar
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Brasier, M. and Antcliffe, J. 2004. Decoding the Ediacaran enigma. Science, 305:11151117.CrossRefGoogle ScholarPubMed
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301(doi: 210.1146/annurev.earth.1131.100901.144746).CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43:166177.CrossRefGoogle ScholarPubMed
Castanier, S., Me'tayer-Levrel, G. l. L., and Perthuisot, J.-P. 1999. Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view. Sedimentary Geology, 126:923.CrossRefGoogle Scholar
Chen, M., Chen, Y., and Qian, Y. 1981. Some tubular fossils from Sinian-Lower Cambrian boundary sequences, Yangtze Gorge. Bulletin, Tianjin Institute of Geology and Mineral Resources, 3:117124.Google Scholar
Chen, P. 1984. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Professional Papers on Stratigraphy and Palaeontology, 13:4966.Google Scholar
Chen, Z., Bengtson, S., Zhou, C., Hua, H., and Yue, Z. 2008. Tube structure and original composition of Sinotubulites: Shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia, 41:3745.CrossRefGoogle Scholar
China Commission on Stratigraphy. 2001. Stratigraphic Guide of China and Its Explanatory Notes (revised edition). Geological Publishing House, Beijing, 42 p.Google Scholar
Clapham, M. E. and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Compston, W., Zhang, Z., and Cooper, J. A. 2008. Futher SHRIMP Geochronology on the early Cambrian of South China. American Journal of Science, 208:399420.CrossRefGoogle Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.CrossRefGoogle ScholarPubMed
Conway Morris, S. 2006. Darwin's dilemma: The realities of the Cambrian “explosion”. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361:1,0691,083. doi:1010.1098/rstb.2006.1846.CrossRefGoogle ScholarPubMed
Conway Morris, S., Mattes, B. W., and Chen, M. 1990. The early skeletal organism Cloudina: New occurrences from Oman and possibly China. American Journal of Science, 290-A:245260.Google Scholar
Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G., and Yao, J. 2009. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim Block, northwestern China). Journal of Paleontology, 83:3044.CrossRefGoogle Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: The unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131147.CrossRefGoogle Scholar
Dzik, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology, 43:114126.CrossRefGoogle ScholarPubMed
Fedonkin, M. A. 2003. The origin of Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7:941.CrossRefGoogle Scholar
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007a. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore, 326 p.Google Scholar
Fedonkin, M. A. and Ivantsov, A. Y. 2007. Ventogyrus, a possible siphonophore-like trilobozoan coelenterate from the Vendian Sequence (late Neoproterozoic), northern Russia, p. 187194. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007b. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): Palaeoecological and evolutionary implications, p. 157179. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Fedonkin, M. A. and Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.CrossRefGoogle Scholar
Ford, T. D. 1958. Precambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 31:211217.CrossRefGoogle Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.CrossRefGoogle Scholar
Gehling, J. G., Droser, M. L., Jensen, S. R., and Runnegar, B. N. 2005. Ediacara organisms: Relating form to function, p. 4366. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Yale Peabody Museum Publications, New Haven.Google Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.CrossRefGoogle Scholar
Gehling, J. G. and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Germs, G. J. B. 1968. Discovery of a new fossil in the Nama System, South West Africa. Nature, 219:5354.CrossRefGoogle Scholar
Germs, G. J. B. 1972. New shelly fossils from the Nama Group, South West Africa. American Journal of Science, 272:752761.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge Univ. Press, Cambridge, UK, 244 p.Google Scholar
Gnilovskaya, M. B. 1971. The most ancient Vendian water plants on the Russian platform. Paleontological Journal, 3:101107.Google Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: Facies versus biogeography and evolution. Paleobiology, 30:203221.2.0.CO;2>CrossRefGoogle Scholar
Grazhdankin, D. and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210.CrossRefGoogle Scholar
Grazhdankin, D. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology, 45:5778.CrossRefGoogle Scholar
Grazhdankin, D. and Seilacher, A. 2005. A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geological Magazine, 142:571582.CrossRefGoogle Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36:803806.CrossRefGoogle Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Memoirs of the Association of Australasian Palaeontologists, 31:1439.Google Scholar
Gürich, G. 1930. Die bislang ältesten Spuren von Organismen in Südafrika. International Geological Congress. South Africa, 1929 (XV), 2:670680.Google Scholar
Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Paläontologische Zeitschrift, 15:137154.CrossRefGoogle Scholar
Hagadorn, J. W. and Bottjer, D. J. 1999. Restriction of a Late Neoproterozoic biotope: Suspect-microbial structures and trace fossils at the Vendian – Cambrian transition. Palaios, 14:7385.CrossRefGoogle Scholar
Hofmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology, 82:136.CrossRefGoogle Scholar
Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33:277280.CrossRefGoogle Scholar
Ivantsov, A. Y. and Grazhdankin, D. 1997. A new representative of the Petalonamae from the upper Vendian of the Arkhangelsk Region. Paleontological Journal (English Translation), 31:116.Google Scholar
Ivantsov, A. Y. and Malakhovskaya, Y. E. 2002. Gigantskiye sledy vendskikh zhivotnykh. Doklady Akademii Nauk, 385:382386.Google Scholar
Jenkins, R. J. F. and Gehling, J. G. 1978. A review of the frond-like fossils of the Ediacara assemblage. Record of South Australia Museum, 17:347359.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2006. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 39:1330.CrossRefGoogle Scholar
Laflamme, M. and Narbonne, G. M. 2008. Ediacaran fronds. Palaeogeography Palaeoclimatology Palaeoecology, 258:162179.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland, p. 237257. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
McFadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxygenation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, USA, 105:3,1973,202.CrossRefGoogle ScholarPubMed
McMenamin, M. A. S. 1998. The Garden of Ediacara: Discovering the First Complex Life. Columbia University Press, New York, 295 p.Google Scholar
Narbonne, G., Laflamme, M., Bamforth, E., Flude, L., and Gehling, J. 2008. Growth and development of early Ediacarans. The 33rd International Geological Congress, Abstract CD-ROM.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:1,1411,144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology, 71:953967.CrossRefGoogle ScholarPubMed
Noffke, N. 2008. Turbulent lifestyle: Microbial mats on Earth's sandy beaches – today and 3 billion years ago. GSA Today, 18:49.CrossRefGoogle Scholar
Noffke, N.in press. The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger sandy deposits. Earth Science Reviews.Google Scholar
Noffke, N., Beukes, N., Bower, D., Hazen, R. M., and Swift, D. J. P. 2008. An actualistic perspective into Archean worlds – (cyano-) bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology, 6:520.CrossRefGoogle ScholarPubMed
Peterson, K. J., Waggoner, B., and Hagadorn, J. W. 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology, 43:127136.CrossRefGoogle ScholarPubMed
Pflug, H. D. 1966. Neue Fossilreste aus den Nama-Schichten in Südwest-Africa. Paläontologische Zeitschrift, 40:1425.CrossRefGoogle Scholar
Porada, H. and Bouougri, E. H. 2007. Wrinkle structures-a critical review. Earth Science Reviews, 81:199215.CrossRefGoogle Scholar
Porada, H. J., Ghergut, J., and Bouougri, E. H. 2008. Kinneyia-Type Wrinkle Structures–Critical Review and Model of Formation. Palaios, 23:6577.CrossRefGoogle Scholar
Qian, Y., Li, G., and Zhu, M. 2001. The Meishucunian Stage and its small shelly fossil sequence in China. Acta Palaeontologica Sinica, 40 (supplement):5462.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544.CrossRefGoogle Scholar
Retallack, G. J. 2007. Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa, 31:215240.CrossRefGoogle Scholar
Riding, R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47 (supplement 1):179214.CrossRefGoogle Scholar
Runnegar, B. 1995. Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna”. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195(1–3):303318.Google Scholar
Schieber, J., Bose, P., Erikkson, P., Banerjee, S., Sarkar, S., Altermann, W., and Catuneanu, O. 2007. Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Elsevier, Amsterdam, 324 p.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.CrossRefGoogle Scholar
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7:4354.CrossRefGoogle Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology, p. 355368. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Sprigg, R. C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transaction of the Royal Society of South Australia, 71:212224.Google Scholar
Steiner, M., Mehl, D., Reitner, J., and Erdtmann, B.-D. 1993. Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowissenschaftliche Abhandlungen (E), 9:293329.Google Scholar
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 31:361375.Google Scholar
Weber, B., Steiner, M., and Zhu, M. Y. 2007. Precambrian-Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography Palaeoclimatology Palaeoecology, 254:328349.CrossRefGoogle Scholar
Xiao, S. and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.CrossRefGoogle ScholarPubMed
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, 24:3140.CrossRefGoogle ScholarPubMed
Xiao, S., Shen, B., Zhou, C., Xie, G., and Yuan, X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences, USA, 102:10,22710,232.CrossRefGoogle ScholarPubMed
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76:347376.2.0.CO;2>CrossRefGoogle Scholar
Yao, J., Xiao, S., Yin, L., Li, G., and Yuan, X. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, northwest China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 48:687708.CrossRefGoogle Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.CrossRefGoogle ScholarPubMed
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Journal of Paleontology, 72 (supplement to No. 4):152.CrossRefGoogle Scholar
Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. 1988. The Sinian System of Hubei. China University of Geosciences Press, Wuhan, 205 p.Google Scholar
Zhou, C., Xie, G., McFadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geological Journal, 42:229262.Google Scholar
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y.-L., and Droser, M. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867870.CrossRefGoogle Scholar