Skip to main content
×
Home
    • Aa
    • Aa

Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution

  • Emmanuelle J. Javaux (a1) and Andrew H. Knoll (a2)
Abstract
Abstract

Well-preserved microfossils occur in abundance through more than 1000 m of lower Mesoproterozoic siliciclastic rocks composing the Roper Group, Northern Territory, Australia. The Roper assemblage includes 34 taxa, five interpreted unambiguously as eukaryotes, nine as possible eukaryotes (including Blastanosphaira kokkoda new genus and new species, a budding spheromorph with thin chagrinate walls), eight as possible or probable cyanobacteria, and 12 incertae sedis. Taxonomic richness is highest in inshore facies, and populations interpreted as unambiguous or probable eukaryotes occur most abundantly in coastal and proximal shelf shales. Phylogenetic placement within the Eukarya is difficult, and molecular clock estimates suggest that preserved microfossils may belong, in part or in toto, to stem group eukaryotes (forms that diverged before the last common ancestor of extant eukaryotes, or LECA) or stem lineages within major clades of the eukaryotic crown group (after LECA). Despite this, Roper fossils provide direct or inferential evidence for many basic features of eukaryotic biology, including a dynamic cytoskeleton and membrane system that enabled cells to change shape, life cycles that include resting cysts coated by decay-resistant biopolymers, reproduction by budding and binary division, osmotrophy, and simple multicellularity. The diversity, environmental range, and ecological importance of eukaryotes, however, were lower than in later Neoproterozoic and Phanerozoic ecosystems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S.T. Abbott , and I.P. Sweet , 2000, Tectonic control on third-order sequences in a siliciclastic ramp-style basin: an example from the Roper Superbasin (Mesoproterozoic), northern Australia: Australian Journal of Earth Sciences, v. 47, p. 637657.

H. Agic , M. Moczydłowska , and L.-M. Yin , 2015, Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China: Journal of Paleontology, v. 89, p. 2850.

B. Allard , and J. Templier , 2000, Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence: Phytochemistry, v. 54, p. 369380.

A.D. Anbar , and A.H. Knoll , 2002, Proterozoic ocean chemistry and evolution: a bioinorganic bridge?: Science, v. 297, p. 11371142.

E.R. Angert , 2005, Alternative to division in Bacteria: Nature Reviews Microbiology, v. 3, p. 214224.

G.L. Arnold , A.D. Anbar , J. Barling , and T.W. Lyons , 2004, Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans: Science, v. 304, p. 8790.

B.K. Baludikay , J.-Y. Storme , C. François , D. Baudet , and E.J. Javaux , 2016, A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso–Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy: Precambrian Research, v. 281, p. 166184.

J. Bartley , 1996, Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record: Palaios, v. 11, p. 571586.

B. Becker , 2013, Snow ball earth and the split of Streptophyta and Chlorophyta: Trends in Plant Sciences, v. 18, p. 180183.

C.D. Beers , 1948, Excystment in the ciliate Bursaria truncatella : Biological Bulletin, v. 94, p. 8698.

C.D. Beers , 1966, The excystment process in the ciliate Nassula ornata Ehrbg.: Journal of Protozoology, v. 13, p. 7983.

J. Bertrand-Sarfati , and M.R. Walter , 1981, Stromatolite biostratigraphy: Precambrian Research, v. 15, p. 353371.

P.G. Betts , and D. Gilles , 2006, The 1800–1100 Ma tectonic evolution of Australia: Precambrian Research, v. 144, p. 92125.

P.I. Blades-Eckelbarger , and N.H. Marcus , 1992, The origin of cortical vesicles and their role in egg envelope formation in the spiny eggs of a calanoid copepod, Centropages velificatus : Biological Bulletin, v. 182, p. 4153.

R.L. Blanton , D. Fuller , N. Iranfar , M.J. Grimson , and W.F. Loomis , 2000, The cellulose synthase gene of Dictyostelium : Proceedings of the National Academy of Sciences, USA, v. 97, p. 23912396.

T. Bosak , A.H. Knoll , and A.P. Petroff , 2013, The meaning of stromatolites: Annual Review of Earth and Planetary Sciences, v. 41, p. 2144.

J.J. Brocks , G.D. Love , R.E. Summons , A.H. Knoll , G.A. Logan , and S. Bowden , 2005, Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean: Nature, v. 437, p. 866870.

N.J. Butterfield , 2000, Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes: Paleobiology, v. 26, p. 386404.

N.J. Butterfield , 2005a, Probable Proterozoic fungi: Paleobiology, v. 31, p. 165182.

N.J. Butterfield , 2005b, Reconstructing a complex Early Neoproterozoic eukaryote, Wynniatt Formation, Arctic Canada: Lethaia, v. 38, p. 155169.

N.J. Butterfield , 2009, Modes of pre-Ediacaran multicellularity: Precambrian Research, v. 173, p. 201211.

N.J. Butterfield , 2015, Early evolution of the Eukaryota: Palaeontology, v. 58, p. 517.

D. Chernikova , S. Motamedi , M. Csueroes , E.V. Koonin , and I.B. Rogozin , 2011, A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes: Biology Direct, v. 6, Article Number: 26, doi: 10.1186/1745-6150-6-26.

P.A. Cohen , and A.H. Knoll , 2012, Neoproterozoic scale microfossils from the Fifteen Mile Group, Yukon Territory: Journal of Paleontology, v. 86, p. 775800.

P.A. Cohen , R. Kodner , and A.H. Knoll , 2009, Large spinose acritarchs in Ediacaran rocks as animal resting cysts: Proceedings of the National Academy of Sciences, USA, v. 106, p. 65196524.

G.K. Colbath , and H.R. Grenfell , 1995, Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”): Review of Palaeobotany and Palynology, v. 86, p. 287314.

K. Cotter , 1997, Neoproterozoic microfossils from the Officer Basin, Western Australia: Alcheringa, v. 21, p. 247270, doi: 10.1080/03115519708619166.

K.L. Cotter , 1999, Microfossils from Neoproterozoic Supersequence 1 of the Officer Basin, Western Australia: Alcheringa, v. 23, p. 6386.

J.W. De Leeuw , J.M. Vesteegh , and P.F. van Bergen , 2006, Biomacromolecules of algae and plants and their fossil analogues: Plant Ecology, v. 182, p. 209233.

S.T. de Vries , L.L. Pryer , and N. Fry , 2008, Evolution of Neoarchaean and Proterozoic basins of Australia: Precambrian Research, v. 166, p. 3953.

L. Dong , S. Xiao , B. Shen , and C. Zhou , 2008, Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis: Journal of the Geological Society, v. 165, p. 367378.

E.J.P. Douzery , E.A. Snell , E. Bapteste , F. Delsuc , and H. Philippe , 2004, The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?: Proceedings of the National Academy of Sciences, v. 101, p. 1538615391.

A. Dutkiewicz , H. Volk , J. Ridley , and S. George , 2003, Biomarkers, brines and oil in the Mesoproterozoic, Roper Superbasin, Australia: Geology, v. 31, p. 981984.

L. Eme , S.C. Sharpe , M.W. Brown , and A.J. Roger , 2014, On the age of eukaryotes: Evaluating evidence from fossils and molecular clocks: Cold Spring Harbor Perspectives in Biology, v. 6, doi: 10.1101/cshperspect.a016139.

I. Floudas , et al., 2012, The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes: Science, v. 336, p. 17151719, doi: 10.1126/science.1221748.

W. Foissner , H. Mueller , and S. Agatha , 2007, A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora): European Journal of Protistology, v. 43, p. 295314.

S. Golubic , V.N. Sergeev , and A.H. Knoll , 1995, Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria: Lethaia, v. 28, p. 285298.

K. Grey , and I.R. Williams , 1990, Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia: Precambrian Research, v. 46, p. 307327.

J.P. Grotzinger , and A.H. Knoll , 1999, Proterozoic stromatolites: evolutionary mileposts or environmental dipsticks?: Annual Review of Earth and Planetary Science, v. 27, p. 313358.

R. Guilbaud , S.W. Poulton , N.J. Butterfield , M. Zhu , and G.A. Shields-Zhou , 2015, Global transition to ferruginous conditions in the early Neoproterozoic oceans: Nature Geosciences, v. 8, p. 466470.

D.S. Heckman , D.M. Geiser , B.R. Eidell , R.L. Stauffer , N.L. Kardos , and S.B. Hedges , 2001, Molecular Evidence for the Early Colonization of Land by Fungi and Plants: Science, v. 293, p. 11291133.

B.S. Hedges , J.E. Blair , M.L. Venturi , and J.L. Shoe , 2004, A molecular timescale of eukaryote evolution and the rise of complex multicellular life: BMC Evolutionary Biology, v. 4, article 2, doi: 10.1186/1471-2148-4-2.

T.N. Hermann , and V.N. Podkovyrov , 2012, Fungal Remains from the Late Riphean: Paleontological Journal, v. 40, p. 207214.

R.J. Horodyski , 1993, Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA: Precambrian Research, v. 61, p. 247278.

R.J. Horodyski , and J.A. Donaldson , 1980, Microfossils from the Middle Proterozoic Dismal Lakes Groups, Arctic Canada: Precambrian Research, v. 11, p. 125159.

G. Hu , T. Zhao , and Y. Zhou , 2014, Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton: Precambrian Research, v. 246, p. 296318.

K. Ishida , and Y. Hara , 1994, Taxonomic studies on the Chlorarachniophyta Chlorarachnion globosum sp. nov.: Phycologia, v. 33, p. 351358.

M.J. Jackson , and R. Raiswell , 1991, Sedimentology and carbon-sulfur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern Australia: Precambrian Research, v. 54, p. 81108.

E.J. Javaux , and C.P. Marshall , 2006, A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs: Review of Palaeobotany and Palynology, v. 139, p. 115.

E.J. Javaux , A.H. Knoll , and M.R. Walter , 2001, Ecological and morphological complexity in early eukaryotic ecosystems: Nature, v. 412, p. 6669.

E.J. Javaux , A.H. Knoll , and M.R. Walter , 2003, Recognizing and interpreting the fossils of early eukaryotes: Origins of Life and Evolution of the Biosphere, v. 33, p. 7594.

E.J. Javaux , A.H. Knoll , and M.R. Walter , 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.

E.J. Javaux , C.P. Marshall , and A. Bekker , 2010, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits: Nature, v. 463, p. 934938.

D.T. Johnston , J. Farquhar , R.E. Summons , Y. Shen , A.J. Kaufman , A.L. Masterson , and D.E. Canfield , 2008, Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin: Geochimica et Cosmochimica Acta, v. 72, p. 42784290.

D.T Johnston , F. Wolfe-Simon , A. Pearson , and A.H. Knoll , 2009, Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age: Proceedings of the National Academy of Sciences, USA, v. 106, p. 1692516929.

D.T Johnston , S. Poulton , C. Dehler , S. Porter , J. Husson , and D.E. Canfield , 2010, An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA: Earth and Planetary Science Letters, v. 290, p. 6473.

A.J. Kaufman , and S. Xiao , 2003, High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils: Nature, v. 425, p. 279282.

B. Kendall , R.A. Creaser , G.W. Gordon , and A.D. Anbar , 2009, Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia: Geochimica et Cosmochimica Acta, v. 73, p. 25342558.

P. Kenrick , and J. Vinther , 2006, Chaetocladus gracilis n. sp., a non-calcified Dasycladales from the Upper Silurian of Skåne, Sweden: Review of Palaeobotany and Palynology, v. 142, p. 153160.

A.H. Knoll , 2014, Paleobiological perspective on early eukaryotic evolution: Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a016121.

A.H. Knoll , and S. Golubic , 1992, Living and Proterozoic cyanobacteria, in Schidlowski M., Golubic, S., and Kimberley, M.M., eds., Early Organic Evolution: Implications for Mineral and Energy Resources: Berlin, Springer-Verlag, p. 450462.

A.H. Knoll , K. Swett , and J. Mark , 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.

A.H. Knoll , S. Wörndle , and L. Kah , 2013, Covariance of microfossil assemblages and microbialite textures across a late Mesoproterozoic carbonate platform: Palaios, v. 28, p. 453470.

R. Kodner , A.H. Knoll , and R.E. Summons , 2009, Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on the green algae: Organic Geochemistry, v. 40, p. 854862.

M. Kralik , 1982, Rb–Sr age determinations on Precambrian carbonate rocks of the Carpentarian McArthur Basin, Northern Territories, Australia: Precambrian Research, v. 18, p. 157170.

D.M. Lamb , S.M. Awramik , D.J. Chapman , and S. Zhu , 2009, Evidence for eukaryotic diversification in the similar to 1800 million-year-old Changzhougou Formation, North China: Precambrian Research, v. 173, p. 93104.

Z. Lan , X. Li , Z.Q. Chen , Q. Li , A. Hofmann , Y. Zhang , Y. Liu , G. Tang , X. Ling , and J. Li. , 2014, Diagenetic xenotime age constraints on the Sanjiaotang Formation,Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes: Precambrian Research, v. 251, p. 2132.

K. Lepot , P. Compère , E. Gérard , Z. Namsaraev , E. Verleyen , I. Tavernier , D.A. Hodgson , W. Vyverman , B. Gilbert , A. Wilmotte , and E.J. Javaux , 2014, Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake: Geobiology, v. 12, p. 424450.

S.T. LoDuca , J. Kluessendorf , and D.G. Mikulic , 2003, A new noncalcified dasycladalean alga from the Silurian of Wisconsin: Journal of Paleontology, v. 77, p. 956962.

P. Lopez-Garcia , and D. Moreira , 2015, Open Questions on the Origin of Eukaryotes: Trends in Ecology and Evolution, v. 30, p. 697708.

R. Lücking , S. Huhndorf , D.H. Pfister , E.R. Plata , and H.T. Lumbsch , 2009, Fungi evolved right on track: Mycologia, v. 101, p. 810822.

C.P. Marshall , E.J. Javaux , A.H. Knoll , and M.R. Walter , 2005, Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology: Precambrian Research, v. 138, p. 208224.

H. Melida , J.V. Sandoval-Sierra , J. Dieguez-Uribeondo , and V. Bulone , 2013, Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types: Eukaryotic Cell, v. 12, p. 194203.

A. Mitra , et al., 2016, Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies: Protist, v. 167, p. 106120.

M. Moczydłowska , E. Landing , W. Zang , and T. Palacios , 2011, Proterozoic phytoplankton and timing of Chlorophyte algae origins: Palaeontology, v. 54, p. 721733.

M.D. Muir , 1976, Proterozoic microfossils from the Amelia Dolomite, McArthur Basin, Northern Territory: Alcheringa, v. 1, p. 143158.

M. Müller , M. Mentel , J.J. van Hellemond , K. Henze , K. Woehle , S.B. Gould , R.-Y. Yu , R.M. van der Giezen , A.G.M. Tielens , and W.F. Martin , 2012, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes: Microbiology and Molecular Biology Reviews, v. 76, p. 444495.

K. Nagovitsin , 2009, Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints: Precambrian Research, v. 173, p. 137145.

K.E. Nagovitsin , A.M. Stanevich , and T.A. Kornilova , 2010, Stratigraphic setting and age of the complex Tappania-bearing Proterozoic fossil biota of Siberia: Russian Geology and Geophysics, v. 51, p. 11921198.

R.M. Nagy , S.M. Porter , C.M. Dehler , and Y. Shen , 2009, Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation: Nature Geoscience, v. 2, p. 415418.

D.Z. Oehler , 1978, Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia: Alcheringa, v. 2, p. 269309.

L. Parfrey , D. Lahr , A.H. Knoll , and L.A. Katz , 2011, Estimating the timing of early eukaryotic diversification with multigene molecular clocks: Proceedings of the National Academy of Sciences, USA, v. 108, p. 1362413629.

Y. Peng , H. Bao , and X. Yuan , 2009, New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China: Precambrian Research, v. 168, p. 223232.

K.J. Peterson , and N.J. Butterfield , 2005, Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record: Proceedings of the National Academy of Sciences, USA, v. 102, p. 95479552.

N.J. Planavsky , P. McGoldrick , C.T. Scott , C. Li , C.T. Reinhard , A.E. Kelly , X. Chu , A. Bekker , G.D. Love , and T.W. Lyons , 2011, Widespread iron-rich conditions in the mid-Proterozoic ocean: Nature, v. 477, p. 448452.

S. Porter , 2006, The Proterozoic fossil record of heterotrophic eukaryotes, in Xiao, S., and Kaufman, A.J., eds. Neoproterozoic Geobiology and Paleobiology: Dordrecht, The Netherlands, Springer, p. 121.

S. Porter , R. Meisterfeld , and A. Knoll , 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429, doi: http://dx.doi.org/10.1017/S0022336000044140.

J.S. Ray , M.W. Martin , J. Veizer , and S.A. Bowring , 2002, U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India: Geology, v. 30, p. 131134.

C.T. Reinhard , N.J. Planavsky , L.J. Robbins , C.A. Partin , B.C. Gill , S.V. Lalonde , A. Bekker , K.O. Konhauser , and T.W. Lyons , 2013, Proterozoic ocean redox and biogeochemical stasis: Proceedings of the National Academy of Sciences, USA, v. 110, p. 53575362.

T.A. Richards , and N.J. Talbot , 2013, Horizontal gene transfer in osmotrophs: playing with public goods: Nature Reviews Microbiology, v. 11, p. 720727.

J. Samuelsson , and N. Butterfield , 2001, Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications: Precambrian Research, v. 107, p. 235251.

J. Samuelsson , P.R. Dawes , and G. Vidal , 1999, Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland: Precambrian Research, v. 96, p. 123.

J.D. Schiffbauer , and S. Xiao , 2009, Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early eukaryotic organisms: Palaios, v. 24, p. 616626.

M.J. Scholz , T.L. Weiss , R.E. Jinkerson , J. Jing , R. Roth , U. Goodenough , M.C. Posewitz , and H.G. Gerkene , 2014, Ultrastructure and composition of the Nannochloropsis gaditana cell wall: Eukaryotic Cell, v. 13, p. 14501464.

V.N. Sergeev , and S.-J. Lee , 2006, Real Eukaryotes and Precipitates First Found in the Middle Riphean Stratotype, Southern Urals: Stratigraphy and Geological Correlation, v. 14, p. 118.

V.N. Sergeev , M.A. Semikhatov , M.A. Fedonkin , and N.G. Vorob’eva , 2010, Principal stages in evolution of Precambrian organic world: 2. The late Proterozoic: Stratigraphy and Geological Correlation, v. 18, p. 561592.

V.N Sergeev , A.H. Knoll , N. Vorob’eva , and N. Sergeeva , 2016, Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform: Precambrian Research, v. 278, p. 87107, doi: 10.1016/j.precamres.2016.03.015.

Y. Shen , A.H. Knoll , and M.R. Walter , 2003, Evidence for low sulphate and deep water anoxia in a mid-Proterozoic marine basin: Nature, v. 423, p. 632635.

E.A. Sperling , A.D. Rooney , L. Hays , V.N. Sergeev , N.G. Vorob’eva , N.D. Sergeeva , D. Selby , D.T. Johnston , and A.H. Knoll , 2014, Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean: Geobiology, v. 12, p. 373386.

A.M. Stanevich , E.N. Maksimova , T.A. Kornilova , D.P. Gladkochub , A.M. Mazukabzov , and T.V. Donskaya , 2009, Microfossils from the Arymas and Debengde Formations, the Riphean of the Olenek Uplift: Age and presumable nature: Stratigraphy and Geological Correlation, v. 17, p. 2035.

P. Strother , L. Battison , M.D. Brasier , and C.H. Wellman , 2011, Earth’s earliest non-marine eukaryotes: Nature, v. 473, p. 505509.

K. Sugitani , K. Mimura , M. Takeuchi , K. Lepot , S. Ito , and E.J. Javaux , 2015, Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils: Geobiology, v. 13, p. 522545.

N. Talyzina , and M. Moczydłowska , 2000, Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lukati Formation, Estonia: Review of Palaeobotany and Palynology, v. 112, p. 121.

Q. Tang , K. Pang , X. Yuan , B. Wan , and S. Xiao , 2015, Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications: Precambrian Research, v. 266, p. 296318.

A. Tomitani , A.H. Knoll , C.M. Cavanaugh , and T. Ohno , 2006, The evolutionary diversification of cyanobacteria: Molecular–phylogenetic and paleontological perspectives: Proceedings of the National Academy of Sciences, v. 103, p. 54425447.

F. Verni , and G. Rosati , 2011, Resting cysts: a survival strategy in Protozoa Ciliophora: Italian Journal of Zoology, v. 78, p. 134145.

G. Vidal , and T.D. Ford , 1985, Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications: Precambrian Research, v. 28, p. 349389.

N.G. Vorob’eva , V.N. Sergeev , and P. Yu , 2015, Kotuikan Formation assemblage: a diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia: Precambrian Research, v. 256, p. 201222.

M.R. Walter , I.N. Krylov , and M.D. Muir , 1988, Stromatolites from Middle and Late Proterozoic sequences in the McArthur and Georgina Basins and the Mount Isa Province, Australia: Alcheringa, v. 12, p. 79106.

S.H. Xiao , A.H. Knoll , A.J. Kaufman , L.M. Yin , and Y. Zhang , 1997, Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform: Precambrian Research, v. 84, p. 197220.

S.H. Xiao , X.L. Yuan , M. Steiner , and A.H. Knoll , 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China: Journal of Paleontology, v. 76, p. 347376.

L.M. Yin , 1997, Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China: Review of Palaeobotany and Palynology, v. 98, p. 1525.

H.S. Yoon , J.D. Hackett , C. Ciniglia , G. Pinto , and D. Bhattacharya , 2004, A molecular timeline for the origin of photosynthetic eukaryotes: Molecular and Biological Evolution, v. 21, p. 809818.

X. Yuan , Z. Chen , S. Xiao , C.M. Zhou , and H. Hua , 2011, An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes: Nature, v. 470, p. 390393.

S. Xiao , A.H. Knoll , A.J. Kaufman , L. Yin , and Y. Zhang , 1997, Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform: Precambrian Research, v. 84, p. 197220.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 39
Total number of PDF views: 381 *
Loading metrics...

Abstract views

Total abstract views: 475 *
Loading metrics...

* Views captured on Cambridge Core between 22nd December 2016 - 24th June 2017. This data will be updated every 24 hours.