Skip to main content

Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution

  • Emmanuelle J. Javaux (a1) and Andrew H. Knoll (a2)

Well-preserved microfossils occur in abundance through more than 1000 m of lower Mesoproterozoic siliciclastic rocks composing the Roper Group, Northern Territory, Australia. The Roper assemblage includes 34 taxa, five interpreted unambiguously as eukaryotes, nine as possible eukaryotes (including Blastanosphaira kokkoda new genus and new species, a budding spheromorph with thin chagrinate walls), eight as possible or probable cyanobacteria, and 12 incertae sedis. Taxonomic richness is highest in inshore facies, and populations interpreted as unambiguous or probable eukaryotes occur most abundantly in coastal and proximal shelf shales. Phylogenetic placement within the Eukarya is difficult, and molecular clock estimates suggest that preserved microfossils may belong, in part or in toto, to stem group eukaryotes (forms that diverged before the last common ancestor of extant eukaryotes, or LECA) or stem lineages within major clades of the eukaryotic crown group (after LECA). Despite this, Roper fossils provide direct or inferential evidence for many basic features of eukaryotic biology, including a dynamic cytoskeleton and membrane system that enabled cells to change shape, life cycles that include resting cysts coated by decay-resistant biopolymers, reproduction by budding and binary division, osmotrophy, and simple multicellularity. The diversity, environmental range, and ecological importance of eukaryotes, however, were lower than in later Neoproterozoic and Phanerozoic ecosystems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hide All
Abbott S.T., and Sweet I.P., 2000, Tectonic control on third-order sequences in a siliciclastic ramp-style basin: an example from the Roper Superbasin (Mesoproterozoic), northern Australia: Australian Journal of Earth Sciences, v. 47, p. 637657.
Adam Z.R., 2014, Microfossil Paleontology and Biostratigraphy of the Early Mesoproterozoic Belt Supergroup, Montana [Ph.D. dissertation]: Bozeman, Montana State University, 192 p.
Adam Z.R, Skidmore M.L., and Mogk D.W., 2016, Paleoenvironmental implications of an expanded microfossil assemblage from the Chamberlain Formation, Belt Supergroup, Montana: The Geological Society of America Special Paper, v. 522, 20 p.
Agic H., Moczydłowska M., and Yin L.-M., 2015, Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China: Journal of Paleontology, v. 89, p. 2850.
Allard B., and Templier J., 2000, Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence: Phytochemistry, v. 54, p. 369380.
Anbar A.D., and Knoll A.H., 2002, Proterozoic ocean chemistry and evolution: a bioinorganic bridge?: Science, v. 297, p. 11371142.
Angert E.R., 2005, Alternative to division in Bacteria: Nature Reviews Microbiology, v. 3, p. 214224.
Arnold G.L., Anbar A.D., Barling J., and Lyons T.W., 2004, Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans: Science, v. 304, p. 8790.
Baludikay B.K., Storme J.-Y., François C., Baudet D., and Javaux E.J., 2016, A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso–Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy: Precambrian Research, v. 281, p. 166184.
Bartley J., 1996, Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record: Palaios, v. 11, p. 571586.
Battison L., and Brasier M.D., 2012, Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland: Precambrian Research, v. 196–197, p. 204217.
Becker B., 2013, Snow ball earth and the split of Streptophyta and Chlorophyta: Trends in Plant Sciences, v. 18, p. 180183.
Beers C.D., 1948, Excystment in the ciliate Bursaria truncatella : Biological Bulletin, v. 94, p. 8698.
Beers C.D., 1966, The excystment process in the ciliate Nassula ornata Ehrbg.: Journal of Protozoology, v. 13, p. 7983.
Beghin J., Storme J.-Y., Blanpied C., Gueneli J., Brocks J., Poulton S., and Javaux E.J., inreview, Microfossils from the late Mesoproterozoic (1.1 Ga) Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa: Precambrian Research.
Berney C., and Pawlowski J., 2006, A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record: Proceedings of the Royal Society, London, v. 273B, p. 18671872.
Bertrand-Sarfati J., and Walter M.R., 1981, Stromatolite biostratigraphy: Precambrian Research, v. 15, p. 353371.
Betts P.G., and Gilles D., 2006, The 1800–1100 Ma tectonic evolution of Australia: Precambrian Research, v. 144, p. 92125.
Blades-Eckelbarger P.I., and Marcus N.H., 1992, The origin of cortical vesicles and their role in egg envelope formation in the spiny eggs of a calanoid copepod, Centropages velificatus : Biological Bulletin, v. 182, p. 4153.
Blanton R.L., Fuller D., Iranfar N., Grimson M.J., and Loomis W.F., 2000, The cellulose synthase gene of Dictyostelium : Proceedings of the National Academy of Sciences, USA, v. 97, p. 23912396.
Bosak T., Knoll A.H., and Petroff A.P., 2013, The meaning of stromatolites: Annual Review of Earth and Planetary Sciences, v. 41, p. 2144.
Boyle R.A., Clark J.R., Poulton S.W., Shields-Zhou G., Canfield D.E., and Lenton T.M., 2013, Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean: Nature Communications, Article 4:1533, doi: 10.1038/ncomms2511.
Brocks J.J., Love G.D., Summons R.E., Knoll A.H., Logan G.A., and Bowden S., 2005, Biomarker evidence for green and purple sulfur bacteria in an intensely stratified Paleoproterozoic ocean: Nature, v. 437, p. 866870.
Butterfield N.J., 2000, Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes: Paleobiology, v. 26, p. 386404.
Butterfield N.J., 2004, A vaucherian alga from the Middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion: Paleobiology, v. 30, p. 231252.
Butterfield N.J., 2005a, Probable Proterozoic fungi: Paleobiology, v. 31, p. 165182.
Butterfield N.J., 2005b, Reconstructing a complex Early Neoproterozoic eukaryote, Wynniatt Formation, Arctic Canada: Lethaia, v. 38, p. 155169.
Butterfield N.J., 2009, Modes of pre-Ediacaran multicellularity: Precambrian Research, v. 173, p. 201211.
Butterfield N.J., 2015, Early evolution of the Eukaryota: Palaeontology, v. 58, p. 517.
Butterfield N.J., Knoll A.H., and Swett K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Fossils and Strata, v. 34, p. 184.
Chernikova D., Motamedi S., Csueroes M., Koonin E.V., and Rogozin I.B., 2011, A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes: Biology Direct, v. 6, Article Number: 26, doi: 10.1186/1745-6150-6-26.
Cohen P.A., and Knoll A.H., 2012, Neoproterozoic scale microfossils from the Fifteen Mile Group, Yukon Territory: Journal of Paleontology, v. 86, p. 775800.
Cohen P.A., Kodner R., and Knoll A.H., 2009, Large spinose acritarchs in Ediacaran rocks as animal resting cysts: Proceedings of the National Academy of Sciences, USA, v. 106, p. 65196524.
Colbath G.K., and Grenfell H.R., 1995, Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”): Review of Palaeobotany and Palynology, v. 86, p. 287314.
Cotter K., 1997, Neoproterozoic microfossils from the Officer Basin, Western Australia: Alcheringa, v. 21, p. 247270, doi: 10.1080/03115519708619166.
Cotter K.L., 1999, Microfossils from Neoproterozoic Supersequence 1 of the Officer Basin, Western Australia: Alcheringa, v. 23, p. 6386.
De Leeuw J.W., Vesteegh J.M., and van Bergen P.F., 2006, Biomacromolecules of algae and plants and their fossil analogues: Plant Ecology, v. 182, p. 209233.
de Vries S.T., Pryer L.L., and Fry N., 2008, Evolution of Neoarchaean and Proterozoic basins of Australia: Precambrian Research, v. 166, p. 3953.
Dong L., Xiao S., Shen B., and Zhou C., 2008, Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis: Journal of the Geological Society, v. 165, p. 367378.
Douzery E.J.P., Snell E.A., Bapteste E., Delsuc F., and Philippe H., 2004, The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?: Proceedings of the National Academy of Sciences, v. 101, p. 1538615391.
Downie C., and Sarjeant W.A.S., 1963, On the interpretation and status of some hystrichosphere genera: Palaeontology, v. 6, p. 8396.
Dutkiewicz A., Volk H., Ridley J., and George S., 2003, Biomarkers, brines and oil in the Mesoproterozoic, Roper Superbasin, Australia: Geology, v. 31, p. 981984.
Eisenack A., 1958, Tasmanites Newton 1875 und Leiosphaeridia n.g. als Gattungen der Hystrichosphaeridea: Palaeontographica Abteilug A, v. 110, p. 119.
Eisenack A., 1965, Mikrofossilien aus dem Silur Gotlands. Hystrichosphären, Problematika: Neues Jahrburch für Geologie und Paläontologie Abhandlungen, v. 122, p. 257274.
Eme L., Sharpe S.C., Brown M.W., and Roger A.J., 2014, On the age of eukaryotes: Evaluating evidence from fossils and molecular clocks: Cold Spring Harbor Perspectives in Biology, v. 6, doi: 10.1101/cshperspect.a016139.
Fedonkin M.A., and Yochelson E.L., 2002, Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-grade colonial eukaryote: Smithsonian Contributions to Paleobiology, v. 94, p. 129.
Floudas I., et al., 2012, The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes: Science, v. 336, p. 17151719, doi: 10.1126/science.1221748.
Foissner W., Mueller H., and Agatha S., 2007, A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora): European Journal of Protistology, v. 43, p. 295314.
Golovenok M.K., and Belova M.Y., 1986, The Riphean microflora in the cherts from the Malgin Formation in the Yudoma-Maya basin: Paleontological Journal, v. 2, p. 8590.
Golubic S., Sergeev V.N., and Knoll A.H., 1995, Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria: Lethaia, v. 28, p. 285298.
Graham L.E., and Wilcox L.W., 2000, Algae: Upper Saddle River NJ, Prentice Hall, 640 p.
Grey K., and Williams I.R., 1990, Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia: Precambrian Research, v. 46, p. 307327.
Grotzinger J.P., and Knoll A.H., 1999, Proterozoic stromatolites: evolutionary mileposts or environmental dipsticks?: Annual Review of Earth and Planetary Science, v. 27, p. 313358.
Guilbaud R., Poulton S.W., Butterfield N.J., Zhu M., and Shields-Zhou G.A., 2015, Global transition to ferruginous conditions in the early Neoproterozoic oceans: Nature Geosciences, v. 8, p. 466470.
Heckman D.S., Geiser D.M., Eidell B.R., Stauffer R.L., Kardos N.L., and Hedges S.B., 2001, Molecular Evidence for the Early Colonization of Land by Fungi and Plants: Science, v. 293, p. 11291133.
Hedges B.S., Blair J.E., Venturi M.L., and Shoe J.L., 2004, A molecular timescale of eukaryote evolution and the rise of complex multicellular life: BMC Evolutionary Biology, v. 4, article 2, doi: 10.1186/1471-2148-4-2.
Hermann T.N., 1974, Finds of massive accumulation of trichomes in the Riphean, in Timofeev, B.V., ed., Microfitofossilii Proterozoia I Rannego Paleozoia SSSR: Leningrad, Nauka, p. 610.
Hermann T.N., 1990, Organic world one billion years ago: Leningrad, Nauka, 50 p. [in Russian with English summary]
Hermann T.N., and Podkovyrov V.N., 2012, Fungal Remains from the Late Riphean: Paleontological Journal, v. 40, p. 207214.
Hofmann H.J., 1999, Global distribution of the Proterozoic sphaeromorph acritarch Valeria lophostriata (Jankauskas): Acta Micropaleontologica Sinica, v. 16, p. 215224.
Hofmann H.J., and Jackson G.D., 1994, Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada: Paleontological Society Memoir, v. 37, p. 139.
Horodyski R.J., 1980, Middle Proterozoic shale-facies microbiota from the Lower Belt Supergroup, Little Belt Mountains, Montana: Journal of Paleontology, v. 54, p. 649663.
Horodyski R.J., 1993, Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA: Precambrian Research, v. 61, p. 247278.
Horodyski R.J., and Donaldson J.A., 1980, Microfossils from the Middle Proterozoic Dismal Lakes Groups, Arctic Canada: Precambrian Research, v. 11, p. 125159.
Horodyski R.J., and Donaldson J.A., 1983, Distribution and Significance of Microfossils in Cherts of the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada: Journal of Paleontology, v. 57, p. 271283.
Hu Y., and Fu J., 1982, Micropalaeoflora from the Gaoshanhe Formation of the Upper Precambrian in Luonan of Shaanxi Province and its stratigraphic significance: Bulletin Xi’an Institute Geology and Mineral Resources, Chinese Academy of Geological Sciences, v. 4, p. 102113.
Hu G., Zhao T., and Zhou Y., 2014, Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton: Precambrian Research, v. 246, p. 296318.
Ishida K., and Hara Y., 1994, Taxonomic studies on the Chlorarachniophyta Chlorarachnion globosum sp. nov.: Phycologia, v. 33, p. 351358.
Jackson M.J., and Raiswell R., 1991, Sedimentology and carbon-sulfur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern Australia: Precambrian Research, v. 54, p. 81108.
Jackson M.J., Sweet I.P., Page R.W., and Bradshaw B.E., 1999, The South Nicholson and Roper Groups: evidence for the early Mesoproterozoic Roper Superbasin, in Bradshaw, B.E., and Scott, D.L., eds., Integrated Basin Analysis of the Isa Superbasin using Seismic, Well-log, and Geopotential Data: An Evaluation of the Economic Potential of the Northern Lawn Hill Platform: Canberra, Australia, Australian Geological Survey Organisation Record 1999/19. [unpaginated]
Jankauskas T.V., 1979a, Nizhnerifeiskie mikrobioty Iuzhnogo Urala (Lower Riphean microbiotas of the southern Urals): Akademii Nauk SSSR, Doklady (Proceedings of the USSR Academy of Sciences), v. 247, p. 14651467. [In Russian]
Jankauskas T.V., 1979b, Srednerifeyski microbiota Yuzhnogo Urala i Bashkirskogo Priural’ya (Middle Riphean microbiota of the southern Urals and the Ural region in Bashkiria): Akademii Nauk SSSR, Doklady (proceedings of the USSR Academy of Sciences), v. 248, p. 190193. [in Russian]
Jankauskas T.V., 1982, Mikrofossilii rifeya Yuzhnogo Urala [Microfossils of the Riphean of the South Urals], in Keller, B.M., ed., Stratotype of the Riphean: Paleontology and Paleomagnetics: Moscow, Nauka, p. 84120.
Jankauskas T.V., Mikhailova N., and Hermann T.N., 1989, Mikrofossilii dokembriya SSSR (Precambrian microfossils of the USSR): Leningrad, Trudy Instituta Geologii i Geochronologii Dokembria SSSR Akademii Nauk. Nauka, 188 p. [In Russian]
Javaux E.J., 2006, The early eukaryote fossil record, in Jékely, G., ed., Evolution of the Eukaryotic Endomembrane System and Cytoskeleton: Austin, Texas, Landes Biosciences Publishers, p. 119.
Javaux E.J., 2011, Evolution of early eukaryotes in Precambrian oceans, in Gargaud, M., Lopez-Garcia, P., and Martin, H., eds., Origins and Evolution of Life: an astrobiology perspective: Cambridge, UK, Cambridge University Press, p. 414449.
Javaux E.J., and Marshall C.P., 2006, A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs: Review of Palaeobotany and Palynology, v. 139, p. 115.
Javaux E.J., Knoll A.H., and Walter M.R., 2001, Ecological and morphological complexity in early eukaryotic ecosystems: Nature, v. 412, p. 6669.
Javaux E.J., Knoll A.H., and Walter M.R., 2003, Recognizing and interpreting the fossils of early eukaryotes: Origins of Life and Evolution of the Biosphere, v. 33, p. 7594.
Javaux E.J., Knoll A.H., and Walter M.R., 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.
Javaux E.J., Marshall C.P., and Bekker A., 2010, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits: Nature, v. 463, p. 934938.
Jékely G., 2006, Evolution of the Eukaryotic Endomembrane System and Cytoskeleton: Advances in Experimental Medicine and Biology, v. 607: Austin, Texas, Landes Biosciences Publishers, 145 p.
Johnston D.T., Farquhar J., Summons R.E., Shen Y., Kaufman A.J., Masterson A.L., and Canfield D.E., 2008, Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin: Geochimica et Cosmochimica Acta, v. 72, p. 42784290.
Johnston D.T, Wolfe-Simon F., Pearson A., and Knoll A.H., 2009, Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age: Proceedings of the National Academy of Sciences, USA, v. 106, p. 1692516929.
Johnston D.T, Poulton S., Dehler C., Porter S., Husson J., and Canfield D.E., 2010, An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA: Earth and Planetary Science Letters, v. 290, p. 6473.
Johnston D.T., Goldberg T., Poulton S.W., Sergeev V.N., Podkovyrov V., Vorob’eva N.G., Bekker A., and Knoll A.H., 2012, Late Ediacaran redox stability and metazoan diversification: Earth and Planetary Science Letters, v. 335–336, p. 2535.
Kaufman A.J., and Xiao S., 2003, High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils: Nature, v. 425, p. 279282.
Kendall B., Creaser R.A., Gordon G.W., and Anbar A.D., 2009, Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia: Geochimica et Cosmochimica Acta, v. 73, p. 25342558.
Kenrick P., and Vinther J., 2006, Chaetocladus gracilis n. sp., a non-calcified Dasycladales from the Upper Silurian of Skåne, Sweden: Review of Palaeobotany and Palynology, v. 142, p. 153160.
Knoll A.H., 2014, Paleobiological perspective on early eukaryotic evolution: Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a016121.
Knoll A.H., and Golubic S., 1992, Living and Proterozoic cyanobacteria, in Schidlowski M., Golubic, S., and Kimberley, M.M., eds., Early Organic Evolution: Implications for Mineral and Energy Resources: Berlin, Springer-Verlag, p. 450462.
Knoll A.H., and Lahr D.J.G., 2016, Fossils, feeding, and the evolution of complex multicellularity, in Niklas, K.J., Newman, S., and Bonner, J.T., eds., Multicellularity, Origins and Evolution, The Vienna Series in Theoretical Biology: Boston, Massachusetts Institute of Technology, p. 116.
Knoll A.H., and Swett K., 1985, Micropalaeontology of the Late Proterozoic Veteranen Group, Spitsbergen: Palaeontology, v. 28, p. 451473.
Knoll A.H., Swett K., and Mark J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.
Knoll A.H., Javaux E.J., Hewitt D., and Cohen P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society, London, v. 361B, p. 10231038.
Knoll A.H., Wörndle S., and Kah L., 2013, Covariance of microfossil assemblages and microbialite textures across a late Mesoproterozoic carbonate platform: Palaios, v. 28, p. 453470.
Kodner R., Knoll A.H., and Summons R.E., 2009, Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on the green algae: Organic Geochemistry, v. 40, p. 854862.
Kralik M., 1982, Rb–Sr age determinations on Precambrian carbonate rocks of the Carpentarian McArthur Basin, Northern Territories, Australia: Precambrian Research, v. 18, p. 157170.
Lamb D.M., Awramik S.M., Chapman D.J., and Zhu S., 2009, Evidence for eukaryotic diversification in the similar to 1800 million-year-old Changzhougou Formation, North China: Precambrian Research, v. 173, p. 93104.
Lan Z., Li X., Chen Z.Q., Li Q., Hofmann A., Zhang Y., Liu Y., Tang G., Ling X., and Li. J., 2014, Diagenetic xenotime age constraints on the Sanjiaotang Formation,Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes: Precambrian Research, v. 251, p. 2132.
Lepot K., Compère P., Gérard E., Namsaraev Z., Verleyen E., Tavernier I., Hodgson D.A., Vyverman W., Gilbert B., Wilmotte A., and Javaux E.J., 2014, Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake: Geobiology, v. 12, p. 424450.
LoDuca S.T., Kluessendorf J., and Mikulic D.G., 2003, A new noncalcified dasycladalean alga from the Silurian of Wisconsin: Journal of Paleontology, v. 77, p. 956962.
Lopez-Garcia P., and Moreira D., 2015, Open Questions on the Origin of Eukaryotes: Trends in Ecology and Evolution, v. 30, p. 697708.
Lücking R., Huhndorf S., Pfister D.H., Plata E.R., and Lumbsch H.T., 2009, Fungi evolved right on track: Mycologia, v. 101, p. 810822.
Luo Q.-L., 1991, New data on the microplants from Changlongshan Formation of Upper Precambrian in western Yanshan Range: Tianjin Instute of Geology and Mineral Resources, v. 25, p. 107118.
Lydon J.W., 2007, Geology and metallogeny of the Belt-Purcell Basin, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 581–607.
Maithy P.K., 1975, Microorganisms from the Bushimay System (Late Precambrian) of Kanshi, Zaire: The Paleobotanist, v. 22, p. 133149.
Marshall C.P., Javaux E.J., Knoll A.H., and Walter M.R., 2005, Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology: Precambrian Research, v. 138, p. 208224.
Melida H., Sandoval-Sierra J.V., Dieguez-Uribeondo J., and Bulone V., 2013, Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types: Eukaryotic Cell, v. 12, p. 194203.
Mitra A., et al., 2016, Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies: Protist, v. 167, p. 106120.
Moczydłowska M., Landing E., Zang W., and Palacios T., 2011, Proterozoic phytoplankton and timing of Chlorophyte algae origins: Palaeontology, v. 54, p. 721733.
Muir M.D., 1976, Proterozoic microfossils from the Amelia Dolomite, McArthur Basin, Northern Territory: Alcheringa, v. 1, p. 143158.
Muir M.D., 1979, A sabkha model for the deposition of part of the Proterozoic McArthur Group of the Northern Territory, and its implications for mineralization: BMR Journal of Australian Geology and Geophysics, v. 4, p. 149162.
Müller M., Mentel M., van Hellemond J.J., Henze K., Woehle K., Gould S.B., Yu R.-Y., van der Giezen R.M., Tielens A.G.M., and Martin W.F., 2012, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes: Microbiology and Molecular Biology Reviews, v. 76, p. 444495.
Nagovitsin K., 2009, Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints: Precambrian Research, v. 173, p. 137145.
Nagovitsin K.E., Stanevich A.M., and Kornilova T.A., 2010, Stratigraphic setting and age of the complex Tappania-bearing Proterozoic fossil biota of Siberia: Russian Geology and Geophysics, v. 51, p. 11921198.
Nagy R.M., Porter S.M., Dehler C.M., and Shen Y., 2009, Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation: Nature Geoscience, v. 2, p. 415418.
Naumova S.N., 1949, Spory nizhnego kembriya [spores from the Lower Cambrian]: Izvestiya Akademiy Nauk, v. 4, p. 4956.
Naumova S.N., 1960, Spore-pollen assemblages in the Riphean and Lower Cambrian deposits of the USSR: Proceedings of the 21st International Geological Congress, Reports of Soviet Scientists, v. 8, p. 109117. [in Russian]
Oehler D.Z., 1978, Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia: Alcheringa, v. 2, p. 269309.
Parfrey L., Lahr D., Knoll A.H., and Katz L.A., 2011, Estimating the timing of early eukaryotic diversification with multigene molecular clocks: Proceedings of the National Academy of Sciences, USA, v. 108, p. 1362413629.
Peat C.J., Muir M.D., Plumb K.A., McKirdy D.M., and Norwick M.S., 1978, Proterozoic microfossils from the Roper Group, Northern Territory, Australia: BMR Journal of Australian Geology and Geophysics, v. 3, p. 117.
Peng Y., Bao H., and Yuan X., 2009, New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China: Precambrian Research, v. 168, p. 223232.
Peterson K.J., and Butterfield N.J., 2005, Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record: Proceedings of the National Academy of Sciences, USA, v. 102, p. 95479552.
Planavsky N.J., McGoldrick P., Scott C.T., Li C., Reinhard C.T., Kelly A.E., Chu X., Bekker A., Love G.D., and Lyons T.W., 2011, Widespread iron-rich conditions in the mid-Proterozoic ocean: Nature, v. 477, p. 448452.
Porter S., 2006, The Proterozoic fossil record of heterotrophic eukaryotes, in Xiao, S., and Kaufman, A.J., eds. Neoproterozoic Geobiology and Paleobiology: Dordrecht, The Netherlands, Springer, p. 121.
Porter S., and Riedmann L.A., inpress, Systematics of organic-walled microfossils from the ~780–740 Ma Chuar Group, Grand Canyon, Arizona: Journal of Paleontology.
Porter S., Meisterfeld R., and Knoll A., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429, doi:
Prasad B., and Asher R., 2001, Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and Lower Paleozoic sediments (Pre-unconformity sequence) of Ganga Basin, India: Paleontographica Indica, v. 5, 151 p.
Prasad B., Uniyal S.N., and Asher R., 2005, Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India: Palaeobotanist, v. 54, p. 1360.
Ray J.S., Martin M.W., Veizer J., and Bowring S.A., 2002, U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India: Geology, v. 30, p. 131134.
Reinhard C.T., Planavsky N.J., Robbins L.J., Partin C.A., Gill B.C., Lalonde S.V., Bekker A., Konhauser K.O., and Lyons T.W., 2013, Proterozoic ocean redox and biogeochemical stasis: Proceedings of the National Academy of Sciences, USA, v. 110, p. 53575362.
Richards T.A., and Talbot N.J., 2013, Horizontal gene transfer in osmotrophs: playing with public goods: Nature Reviews Microbiology, v. 11, p. 720727.
Riedman L.A., and Porter S.M., inpress, High morphological diversity of organic-walled microfossils from the Neoproterozoic Alinya Formation, Officer Basin, Australia: Journal of Paleontology.
Rippka R., Deruelles J., Waterbury J.B., Herdman M., and Stanier R.Y., 1979, Generic assignments, strain histories and properties of pure cultures of cyanobacteria: Journal of General Microbiology, v. 111, p. 161.
Saga Y., and Yanagisawa K., 1982, Macrocyst development in Dictvostelium discoideum. 1. Induction of synchronous development by giant cells and biochemical analysis: Journal of Cell Science, v. 55, p. 341352.
Samuelsson J., 1997, Biostratigraphy and paleobiology of early Neoproterozoic strata of the Kola Peninsula, northwest Russia: Norsk Geologisk Tidsskrift, v. 77, p. 16192.
Samuelsson J., and Butterfield N., 2001, Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications: Precambrian Research, v. 107, p. 235251.
Samuelsson J., Dawes P.R., and Vidal G., 1999, Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland: Precambrian Research, v. 96, p. 123.
Schepeleva E.D., 1960, Nakhodki sinezelenykh vodoroslej v nizhnekembrijskikh otlozheniyakh Leningradskoj oblasti [Finds of blue-green algae in Lower Cambrian deposits of the Leningrad region]. in., Problemy Neftyanoj Geologii i Voprosy Metodiki Laboratornykh Issledovanij: Moscow, Nauka, p. 170172.
Schiffbauer J.D., and Xiao S., 2009, Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early eukaryotic organisms: Palaios, v. 24, p. 616626.
Scholz M.J., Weiss T.L., Jinkerson R.E., Jing J., Roth R., Goodenough U., Posewitz M.C., and Gerkene H.G., 2014, Ultrastructure and composition of the Nannochloropsis gaditana cell wall: Eukaryotic Cell, v. 13, p. 14501464.
Schopf W., 1968, Microflora of the Bitter Springs Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651688.
Schopf J.W., 1992, Atlas of representative Proterozoic microfossils, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere: Cambridge, Cambridge University Press, p. 10571117.
Schopf J.W., and Blacic J., 1971, Microorganisms from the Bitter Springs Formation (Late Precambrian) of the North-Central Amadeus Basin, Australia: Journal of Paleontology, v. 45, p. 925960.
Sergeev V.N., 1992, Silicified Microfossils of the Precambrian and Cambrian in the Urals and central Asia: Moscow, Nauka, 139 p. [in Russian]
Sergeev V.N., 2006, Precambrian Microfossils in Cherts : Their Paleobiology, Classification, and Biostratigraphic Usefulness: Moscow, Geos, 280 p. [in Russian]
Sergeev V.N., and Lee S.-J., 2001, Microfossils from Cherts of the Middle Riphean Svetlyi Formation, the Uchur-Maya Region of Siberia, and Their Stratigraphic Significance: Stratigraphic Geological Correlation, v. 9, p. 312.
Sergeev V.N., and Lee S.-J., 2006, Real Eukaryotes and Precipitates First Found in the Middle Riphean Stratotype, Southern Urals: Stratigraphy and Geological Correlation, v. 14, p. 118.
Sergeev V.N., Knoll A.H., and Grotzinger J.P., 1995, Paleobiology of the Mesoproterozoic Billiakh Group, Anabar Uplift, Northeastern Siberia: Paleontological Society Memoir, v. 39, 37 p.
Sergeev V.N., Semikhatov M.A., Fedonkin M.A., and Vorob’eva N.G., 2010, Principal stages in evolution of Precambrian organic world: 2. The late Proterozoic: Stratigraphy and Geological Correlation, v. 18, p. 561592.
Sergeev V.N, Knoll A.H., Vorob’eva N., and Sergeeva N., 2016, Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform: Precambrian Research, v. 278, p. 87107, doi: 10.1016/j.precamres.2016.03.015.
Shen Y., Knoll A.H., and Walter M.R., 2003, Evidence for low sulphate and deep water anoxia in a mid-Proterozoic marine basin: Nature, v. 423, p. 632635.
Sperling E.A., Rooney A.D., Hays L., Sergeev V.N., Vorob’eva N.G., Sergeeva N.D., Selby D., Johnston D.T., and Knoll A.H., 2014, Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean: Geobiology, v. 12, p. 373386.
Stanevich A.M., Maksimova E.N., Kornilova T.A., Gladkochub D.P., Mazukabzov A.M., and Donskaya T.V., 2009, Microfossils from the Arymas and Debengde Formations, the Riphean of the Olenek Uplift: Age and presumable nature: Stratigraphy and Geological Correlation, v. 17, p. 2035.
Strother P.K., Knoll A.H., and Barghoorn. E.S., 1983, Microorganisms from the late Precambrian Narssârssuk Formation, north-western Greenland: Palaeontology, v. 26, p. 132.
Strother P., Battison L., Brasier M.D., and Wellman C.H., 2011, Earth’s earliest non-marine eukaryotes: Nature, v. 473, p. 505509.
Stüeken E.E., 2013, A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile: Geochimica et Cosmochimica Acta, v. 20, p. 121139.
Su W., Li H., Xu L., Jia S., Geng J., Zhou H., Wang Z., and Pu H.-Y., 2012, Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System: direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China: Geological Survey and Research, v. 35, p. 96108.
Sugitani K., Mimura K., Takeuchi M., Lepot K., Ito S., and Javaux E.J., 2015, Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils: Geobiology, v. 13, p. 522545.
Talyzina N., and Moczydłowska M., 2000, Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lukati Formation, Estonia: Review of Palaeobotany and Palynology, v. 112, p. 121.
Tang Q., Pang K., Yuan X., Wan B., and Xiao S., 2015, Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications: Precambrian Research, v. 266, p. 296318.
Timofeev B.V., 1959, Dreveneyshaya flora Pribaltiki i ee stratigraficheskoe znachenie (Oldest flora of the Baltic area and its stratigraphic significance): Trudy Vsesoyuznogo Neftyanogo Nauchno-Issle-dovatel’skogo Geologorazvedochnogo Instituta (VNIGRI), v. 129, 320 p. [in Russian]
Timofeev B.V., 1966, Mikropaleofitologicheskoe isslodovanie drevnikh svit (Microphytological investigations of ancient formations): Akademiya Nauk SSSR, Nauka, Moscow, 147 p. [in Russian]
Timofeev B.V., Hermann T.N., and Mikhailova N.S., 1976, Mikrofitofossilii Dokembriia, Kembriia i Ordovika (Plant Microfossils of the Precambrian, Cambrian, and Ordovician): Leningrad, Scientific Institute of Precambrian Geology and Geochronology, 106 p. [in Russian]
Tomitani A., Knoll A.H., Cavanaugh C.M., and Ohno T., 2006, The evolutionary diversification of cyanobacteria: Molecular–phylogenetic and paleontological perspectives: Proceedings of the National Academy of Sciences, v. 103, p. 54425447.
Turner R.E., 1984, Acritarchs from the type area of the Ordovicain Caradoc Series, Shropshire, England: Palaeontographica, Abteiling B, v. 190, p. 87157.
Verni F., and Rosati G., 2011, Resting cysts: a survival strategy in Protozoa Ciliophora: Italian Journal of Zoology, v. 78, p. 134145.
Vidal G., and Ford T.D., 1985, Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications: Precambrian Research, v. 28, p. 349389.
Vidal G., and Siedlecka A., 1983, Planktonic, acid-resistant microfossils from the Upper Proterozoic strata of Barents Sea region of Varanger Peninsula, East Finnmark, Northen Norway: Norges Geologiske undersøkelse Bulletin, v. 382, p. 4579.
Vorob’eva N.G., Sergeev V.N., and Yu P., 2015, Kotuikan Formation assemblage: a diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia: Precambrian Research, v. 256, p. 201222.
Waterbury J.M., and Stanier R.Y., 1978, Patterns of growth and development in pleurocapsalean cyanobacteria: Microbiological Reviews, v. 42, p. 244.
Walter M.R., Krylov I.N., and Muir M.D., 1988, Stromatolites from Middle and Late Proterozoic sequences in the McArthur and Georgina Basins and the Mount Isa Province, Australia: Alcheringa, v. 12, p. 79106.
Walter M.R., Du R.L., and Horodyski R.J., 1990, Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana: American Journal of Science, v. 290A, p. 133148.
Xiao S.H., Knoll A.H., Kaufman A.J., Yin L.M., and Zhang Y., 1997, Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform: Precambrian Research, v. 84, p. 197220.
Xiao S.H., Yuan X.L., Steiner M., and Knoll A.H., 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China: Journal of Paleontology, v. 76, p. 347376.
Xing Y., and Liu K., 1973, On Sinian microflora in Yenliao region of China and its geographic significance: Acta Geologica Sinica, v. 1, p. 164.
Yang E.C., Boo S.M., Battacharya D., Saunders G.W., Knoll A.H., Fredericq S., Graf L., and Yoon H.S., 2016, Divergence times estimates and the evolution of major lineages in the florideophyte red algae: Scientific Reports, 2016 Feb 19;6:21361, doi: 10.1038/srep21361.
Yin L.M., 1997, Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China: Review of Palaeobotany and Palynology, v. 98, p. 1525.
Yin L., and Yuan X., 2007, Radiation of Meso-Neoproterozoic and Early Cambrian protists inferred from the microfossil record of China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 350361.
Yin L.M., Yuan X.L., Meng F.W., and Hu J., 2005, Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China: Precambrian Research, v. 141, p. 4966.
Yoon H.S., Hackett J.D., Ciniglia C., Pinto G., and Bhattacharya D., 2004, A molecular timeline for the origin of photosynthetic eukaryotes: Molecular and Biological Evolution, v. 21, p. 809818.
Yuan X., Chen Z., Xiao S., Zhou C.M., and Hua H., 2011, An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes: Nature, v. 470, p. 390393.
Xiao S., Knoll A.H., Kaufman A.J., Yin L., and Zhang Y., 1997, Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform: Precambrian Research, v. 84, p. 197220.
Zhang Y., 1981, Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China: Journal of Paleontology, v. 55, p. 485506.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 63
Total number of PDF views: 463 *
Loading metrics...

Abstract views

Total abstract views: 593 *
Loading metrics...

* Views captured on Cambridge Core between 22nd December 2016 - 21st November 2017. This data will be updated every 24 hours.