Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.392 Render date: 2022-05-22T14:45:06.614Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

An electromagnetic gamma-ray free electron laser*

Published online by Cambridge University Press:  09 August 2013

BENGT ELIASSON
Affiliation:
Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum, Germany (beliass@yahoo.se)
CHUAN SHENG LIU
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742, USA (csliu@umd.edu)

Abstract

We present a theoretical model for the generation of coherent gamma rays by a free electron laser, where a high-energy electron beam interacts with an electromagnetic wiggler. By replacing the static undulator with a 1-μm laser wiggler, the resulting radiation would go from X-rays currently observed in experiments, to gamma rays. Coherent light in the gamma-ray range would have wide-ranging applications in the probing of matter on sub-atomic scales.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is devoted to the memory of Professor Padma Kant Shukla.

References

Baldwin, G. C. and Solem, J. C. 1997 Rev. Mod. Phys. 69, 1085.CrossRefGoogle Scholar
Bonifacio, R., Cola, M. M., Piovella, N. and Robb, G. R. M. 2005a Europhys. Lett. 69, 55.CrossRefGoogle Scholar
Bonifacio, R., Piovella, N., Cola, M. M. and Volpe, L. 2007 Nucl. Instrum. Methods Phys. Res. A 577, 745.CrossRefGoogle Scholar
Compton, A. H. 1923 Phys. Rev. 21, 483.CrossRefGoogle Scholar
Eliasson, B. and Shukla, P. K. 2011 Phys. Rev. E 83, 046407.Google Scholar
Eliasson, B. and Shukla, P. K. 2012a Physical Review E 85, 065401(R).Google Scholar
Eliasson, B. and Shukla, P. K. 2012b Plasma Phys. Control. Fusion 54, 124011.CrossRefGoogle Scholar
Glenzer, S. H.et al. 2007 Phys. Rev. Lett. 98, 065002.CrossRefGoogle Scholar
Glenzer, S. H. and Redmer, R. 2009 Rev. Mod. Phys. 81, 1625.CrossRefGoogle Scholar
Haas, F., Eliasson, B. and Shukla, P. K. 2012 Phys. Rev. E 85, 056411.Google Scholar
Hand, E. 2009 Nature 461, 708.CrossRefGoogle Scholar
Ishikawa, T., Aoyagi, H. and Asaka, T.et al. 2012 Nature Photonics, 6 540.CrossRefGoogle Scholar
Kuzelev, M. V. 2011 JETP, 112 333.CrossRefGoogle Scholar
Madey, J. M. J. 1971 J. Appl. Phys. 42, 1906.CrossRefGoogle Scholar
Mendonça, J. T. 2011 Phys. Plasmas 18, 062101.CrossRefGoogle Scholar
Neumayer, P.et al. 2010 Phys. Rev. Lett. 105, 075003.CrossRefGoogle Scholar
Piovella, N., Cola, M. M., Volpe, L., Schiavi, A., and Bonifacio, R. 2008 Phys. Rev. Lett. 100, 044801.CrossRefGoogle Scholar
Preparata, G. 1988 Phys. Rev. A 38, 233 (1988 ).CrossRefGoogle Scholar
Rivlin, L. A. 2007 Quantum Electron. 37, 723.CrossRefGoogle Scholar
Rivlin, L. A. and Zadernovsky, A. A. 2010 Laser Phys. 20 (5), 971.CrossRefGoogle Scholar
Robertson, C. W. and Sprangle, P. 1989 Phys. Fluids B 1, 3.CrossRefGoogle Scholar
Serbeto, A., Monteiro, L. F., Tsui, K. H. and Mendonça, J. T. 2009 Plasma Phys. Control. Fusion 51 124024.CrossRefGoogle Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
Son, S. and Moon, S. J. 2012 Phys. Plasmas 19, 063102.CrossRefGoogle Scholar
Sprangle, P., Hafizi, B. and Peñano, J. R. 2009 Phys. Rev. ST Accel. Beams 12, 050702.CrossRefGoogle Scholar
Stenflo, L. 1976 Phys. Scr. 14, 320.CrossRefGoogle Scholar
Takabayasi, T. 1953 Prog. Theor. Phys. 9, 187.CrossRefGoogle Scholar
Tkalya, E. V. 2011 Phys. Rev. Lett., 106, 162501.CrossRefGoogle Scholar
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An electromagnetic gamma-ray free electron laser*
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

An electromagnetic gamma-ray free electron laser*
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

An electromagnetic gamma-ray free electron laser*
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *