Hostname: page-component-5db6c4db9b-fdz9p Total loading time: 0 Render date: 2023-03-25T05:26:11.940Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Processes in afterglow responsible for initiation of electrical breakdown in xenon at low pressure

Published online by Cambridge University Press:  22 February 2013

Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia ( Center of Scientific Research of the Serbian Academy of Science and Arts, University of Niš, Univerzitetski trg 2, 18000 Niš, Serbia
Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (
Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (
Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (
Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia


The processes responsible for initiation of electrical breakdown in xenon-filled tube with two spherical iron electrodes at 2.7-mbar pressure have been analyzed. The analysis is based on the experimental data of electrical breakdown time delay as a function of afterglow period. It is shown that positive ions remaining from previous discharge, as well as positive ions created in mutual collisions of metastable atoms in afterglow, have a dominant role in secondary emission of electrons from the cathode which lead to initiation of breakdown in early afterglow. In late afterglow, dominant role in initiation of breakdown is taken by N(4S) atoms formed during the discharge by dissociation of ground state nitrogen molecules that are present as impurities in xenon. When the concentration of N(4S) atoms decreases sufficiently, the initiation of breakdown is caused by cosmic radiation. Small doses of gamma-ray irradiation also contribute to the initiation of breakdown, but only for large values of the afterglow period.

Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ahmad, N. D., Kondo, A., Motomura, H. and Jinno, M. 2009 Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance. J. Phys. D: Appl. Phys. 42, 095202.Google Scholar
Atkins, R. W. 1987 Physical Chemistry. Oxford, UK: Oxford University Press.Google Scholar
Balasri, A. and Harrache, Z. 2010 Electrical and kinetical aspects of homogenous dielectric barrier discharge in xenon for excimer lamps. Phys. Plasmas 17, 123501.CrossRefGoogle Scholar
Balasri, A., Khodja, K., Bendella, S. and Harrache, Z. 2010 One-dimensional modeling of DBDs in Ne-Xe mixtures for excimer lamps. J. Phys. D: Appl. Phys. 43, 445202.CrossRefGoogle Scholar
Dagang, A., Bhosle, S., Zissis, G. and Gorazza, A. 2010 Investigation on the effect impurities in xenon based dielectric barrier discharge lamps. J. Phys. D: Appl. Phys. 43, 234006.CrossRefGoogle Scholar
Das, M. and Karamakar, M. 2005 Radiative lifetime of some excited states of neutral xenon. Eur. Phys. J. D. 32, 285.CrossRefGoogle Scholar
Denisova, N., Gavare, Z., Revalde, G., Skudra, J. and Veilande, R. 2011 A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixture. J. Phys. D: Appl. Phys. 44, 155201.CrossRefGoogle Scholar
Gnybida, M., Uhrlandt, D. and Loffhagen, D. 2012 Investigation of pulsed xenon discharge at medium pressure. J. Phys. D: Appl. Phys. 45, 195203.CrossRefGoogle Scholar
Golubovskii, Yu., Lange, H., Maiorov, V., Porokhova, I. and Sushkov, V. 2003 On the decay of metastable and resonance Xe atoms in the afterglow of a constricted discharge. J. Phys. D: Appl. Phys. 36, 694.CrossRefGoogle Scholar
Golubovskii, Yu. B., Lange, H., Porokhova, I. A. and Uhrlandt, D. 2001 Investigation of resonance and metastable atoms in the afterglow of a He-Xe positive column plasma. J. Phys. D: Appl. Phys. 34, 1840.CrossRefGoogle Scholar
Guerra, V. and Loureiro, J. 1997 Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge. Plasma Sources Sci. Technol. 6, 361374.CrossRefGoogle Scholar
Hine, K., Joshimura, S., Ikuse, K., Kiucihi, M., Hashimoto, J., Terauchi, M., Nishitani, M. and Hamaguchi, S. 2007 Sputtering yields of CaO, CrO and BaO by monchromatic noble gas ion bombardment. Japan. J. Appl. Phys. 46, 11321136.CrossRefGoogle Scholar
Hine, K., Joshimura, S., Ikuse, K., Kiuchi, M., Hashimoto, J., Terauchi, M., Nishitani, M. and Hamaguchi, S. 2008 Experimental evolution of MgO sputtering yields by monochromatic Ne, Kr or Xe ion beams. Thin Solid Films 517, 835840.CrossRefGoogle Scholar
Hwang, H. S., Baik, H. K., Park, K. W., Song, K. M. and Lee, S. J. 2010 Excitation energy transfer metastable krypton atoms Kr-He-Xe low-pressure glow discharge for mercury-free lighting. Japan. J. Appl. Phys. 49, 080218.CrossRefGoogle Scholar
Ichikawa, Y. and Teii, S. 1980 Molecular ion and metastable atom formation and their effect on electron temperature in medium-pressure rare-gas positive-column plasmas. J. Phys. D: Appl. Phys. 13, 2031.CrossRefGoogle Scholar
Jou, S. Y., Hung, C. T., Chiu, Y. N., Wu, J. S. and Wei, B. J. 2011 Enhancement of VUV emission from a coaxial xenon excimer ultraviolet lamp driven by distorted bipolar square voltages. Contrib. Plasma. Phys. 51, 906919.CrossRefGoogle Scholar
Kannari, F., Kimura, W., Seamens, J. and Guyer, D. 1987 Xenon excited state density measurements in electron beam pumped XeCl mixtures. Appl. Phys. Lett. 51, 1986.CrossRefGoogle Scholar
Klenovskii, M. S., Kel'man, V. A., Zhmenyak, Yu. V. and Shpenik, Yu. O. 2010 Electrical-discharge UV radiation source based on a Xe-CsCl vapor-gas mixture. Tech. Phys. 55, 709714.CrossRefGoogle Scholar
Klenovskii, M. S., Riives, R. B., Kel'man, V. A., Zhmenyak, Yu. V. and Shpenik, Yu. O. 2009 Kr-KCl exeplex lamp. Tech. Phys. 54, 10071010.CrossRefGoogle Scholar
Llewelyn-Jones, F. and de la Perrelle, E. T. 1953 Field emission of electrons in discharges. Proc. R. Soc. London. A216, 267279.CrossRefGoogle Scholar
Loureiro, J. 1991 Dissociation rate and N(4S) atom concentrations in a N2 glow discharge. Chem. Phys. 157, 157167.CrossRefGoogle Scholar
Meek, J. M. and Craggs, J. D. 1953 Electrical Breakdown of Gases. Oxford, UK: Clarendon Press.Google Scholar
Meek, J. M. and Craggs, J. D. 1978 Electrical Breakdown of Gases. New York: Wiley.Google Scholar
Nesic, N. T., Ristic, G. S., Karamarkovic, J. P. and Pejović, M. M. 2008 Modeling of time delay of electrical breakdown for nitrogen-filled tube at pressure of 6.6 and 13.3 mbar on the increase region of the memory curve. J. Phys. D: Appl. Phys. 41, 225205.CrossRefGoogle Scholar
Pejović, M. M. 2005 Digital system for vacuum and gas-filled device testing. Rev. Sci. Instr. 76, 15.CrossRefGoogle Scholar
Pejović, M. M., Denić, D. B., Pejović, M. M., Nesić, N. T. and Vasović, N. 2010 Microcontroller-based system for electrical breakdown time delay measurement in gas-filled devices. Rev. Sci. Instr. 81, 105104.CrossRefGoogle ScholarPubMed
Pejović, M. M., Mijović, B. J. and Bošan, Dj. A. 1983 Memory curves in the rare gases. J. Phys. D: Appl. Phys. 16, 149151.CrossRefGoogle Scholar
Pejović, M. M., Milosavljević, C. S. and Pejović, M. M. 2003 The estimation of static breakdown voltage for gas filled tubes at low pressures using dynamic method. IEEE Trans. Plasma Sci. 31, 776781.CrossRefGoogle Scholar
Pejović, M. M., Nesic, N. T., Pejović, M. M. and Zivanovic, E. N. 2012 Afterglow processes responsible for memory effect in nitrogen. J. Appl. Phys. 112, 013301.CrossRefGoogle Scholar
Pejović, M. M. and Pejović, M. M. 2006 The influence of some species formed during discharge and gamma and UV radiation on breakdown voltage and time delay in nitrogen and neon at low pressure. Plasma Sources Sci. Technol. 14, 492.CrossRefGoogle Scholar
Pejović, M. M., Zivanovic, E. N. and Pejović, M. M. 2004 Kinetics of ions and neutral active states in the afterglow and their influence on the memory effect in nitrogen at low pressures. J. Phys. D: Appl. Phys. 37, 200.CrossRefGoogle Scholar
Reeves, R., Mannella, E. and Hartech, P. 1960 Formation of excited NO and N2 by wall catalysis. J. Chem. Phys. 32, 946952.CrossRefGoogle Scholar
Riives, R. B., Svetlichnyi, E. A., Zhmenyak, Yu. V., Kel'man, V. A. and Shpenik, Yu. O. 2004 Source of UV radiation based on pulse discharge in a Xe-NaCl mixture. Tech. Phys. 49, 13351338.CrossRefGoogle Scholar
Smirnov, Y. M. and Yudin, N. P. 1980 Nuclear Physics. Moskwa, Poland: Nauka.Google Scholar
Uhrlandt, D., Bussiahn, R., Gorchakov, S., Lange, H., Loffhagen, D. and Notzold, D. 2005 Low pressure mercuty-free plasma light sources: experimental and theoretical perspectives. J. Phys. D: Appl. Phys. 38, 33183324.CrossRefGoogle Scholar