Skip to main content Accessibility help

Alternating direction implicit type preconditioners for the steady state inhomogeneous Vlasov equation

  • Markus Gasteiger (a1), Lukas Einkemmer (a1), Alexander Ostermann (a1) and David Tskhakaya (a2)


The purpose of the current work is to find numerical solutions of the steady state inhomogeneous Vlasov equation. This problem has a wide range of applications in the kinetic simulation of non-thermal plasmas. However, the direct application of either time stepping schemes or iterative methods (such as Krylov-based methods such as the generalized minimal residual method (GMRES) or relaxation schemes) is computationally expensive. In the former case the slowest time scale in the system forces us to perform a long time integration while in the latter case a large number of iterations is required. In this paper we propose a preconditioner based on an alternating direction implicit type splitting method. This preconditioner is then combined with both GMRES and Richardson iteration. The resulting numerical schemes scale almost ideally (i.e. the computational effort is proportional to the number of grid points). Numerical simulations conducted show that this can result in a speed-up of close to two orders of magnitude (even for intermediate grid sizes) with respect to the unpreconditioned case. In addition, we discuss the characteristics of these numerical methods and show the results for a number of numerical simulations.


Corresponding author

Email address for correspondence:


Hide All
Adams, M. F., Samtaney, R. & Brandt, A. 2010 Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics. J. Comput. Phys. 229 (18), 62086219.
Arber, T. D. & Vann, R. G. L. 2002 A critical comparison of Eulerian-grid-based Vlasov solvers. J. Comput. Phys. 180 (1), 339357.
Batishchev, O. V., Xu, X. Q., Byers, J. A., Cohen, R. H., Krasheninnikov, S. I., Rognlien, T. D. & Sigmar, D. J. 1996 Kinetic effects on particle and heat fluxes in detached plasmas. Phys. Plasmas 3 (9), 33863396.
Briggs, W. L., Henson, V. E. & McCormick, S. F. 2000 A Multigrid Tutorial. SIAM.
Casas, F., Crouseilles, N., Faou, E. & Mehrenberger, M. 2017 High-order Hamiltonian splitting for the Vlasov–Poisson equations. Numer. Math. 135, 769801.
Chacón, L. 2008 An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamics. Phys. Plasmas 15 (5), 056103.
Chacón, L. & Knoll, D. A. 2003 A 2D high- $\unicode[STIX]{x1D6FD}$ Hall MHD implicit nonlinear solver. J. Comput. Phys. 188 (2), 573592.
Cheng, C. Z. & Knorr, G. 1976 Integration of the Vlasov equation in configuration space. J. Comput. Phys. 22 (3), 330351.
Chodura, R. 1992 Kinetic effects in the scrape off layer. Contrib. Plasma Phys. 32, 219230.
Christlieb, A.2015 Method of lines transpose an implicit Vlasov Maxwell solver for plasmas. Tech. Rep. ADA627056, DTIC Document.
Crouseilles, N., Einkemmer, L. & Faou, E. 2015 Hamiltonian splitting for the Vlasov–Maxwell equations. J. Comput. Phys. 283, 224240.
Crouseilles, N., Einkemmer, L. & Faou, E. 2016 An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit. Comput. Phys. Commun. 209, 1326.
Crouseilles, N., Mehrenberger, M. & Sonnendrücker, E. 2010 Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229 (6), 19271953.
Einkemmer, L.2016 Structure preserving numerical methods for the Vlasov equation. Preprint, arXiv:1601.02280.
Einkemmer, L. & Ostermann, A. 2014a Convergence analysis of a discontinuous Galerkin/Strang splitting approximation for the Vlasov–Poisson equations. SIAM J. Numer. Anal. 52 (2), 757778.
Einkemmer, L. & Ostermann, A. 2014b Convergence analysis of Strang splitting for Vlasov-type equations. SIAM J. Numer. Anal. 52 (1), 140155.
Filbet, F., Sonnendrücker, E. & Bertrand, P. 2001 Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (1), 166187.
Gasteiger, M. & Tskhakaya, D. 2014 On the electron distribution function in the edge plasma. Contrib. Plasma Phys. 54, 503507.
Hujeirat, A. 1998 IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems. Mon. Not. R. Astron. Soc. 298 (1), 310320.
Janev, R. K., Reiter, D. & Samm, U.2004 Collision processes in low-temperature hydrogen plasmas. Tech. Rep. 4105, Zentralbibliothek, Forschungszentrum Jülich.
Karney, C. F. F. 1986 Fokker–Planck and quasilinear codes. Comput. Phys. Rep. 4 (3), 183244.
Klimas, A. J. & Farrell, W. M. 1994 A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110 (1), 150163.
Landreman, M. & Ernst, D. R. 2012 Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal. Plasma Phys. Control. Fusion 54 (11), 115006.
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Wiley.
Lindemuth, I. & Killeen, J. 1973 Alternating direction implicit techniques for two-dimensional magnetohydrodynamic calculations. J. Comput. Phys. 13 (2), 181208.
Müller, E. H & Scheichl, R. 2014 Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Q. J. R. Meteorol. Soc. 140 (685), 26082624.
Qiu, J.-M. & Christlieb, A. 2010 A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229 (4), 11301149.
Qiu, J.-M. & Shu, C.-W. 2011 Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230 (23), 83868409.
Reynolds, D. R., Samtaney, R. & Tiedeman, H. C. 2012 A fully implicit Newton–Krylov–Schwarz method for tokamak magnetohydrodynamics: Jacobian construction and preconditioner formulation. Comput. Sci. Disc. 5 (1), 014003.
Reynolds, D. R., Samtaney, R. & Woodward, C. S. 2010 Operator-based preconditioning of stiff hyperbolic systems. SIAM J. Sci. Comput. 32 (1), 150170.
Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L. 1957 Fokker–Planck equation for an inverse-square force. Phys. Rev. 107, 16.
Rossmanith, J. A. & Seal, D. C. 2011 A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230 (16), 62036232.
Saad, Y. 2003 Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM.
Sauter, O., Harvey, R. W. & Hinton, F. L. 1994 A 3-D Fokker–Planck code for studying parallel transport in tokamak geometry with arbitrary collisionalities and application to neoclassical resistivity. Contrib. Plasma Phys. 34 (2–3), 169174.
Schnack, D. & Killeen, J. 1980 Nonlinear, two-dimensional magnetohydrodynamic calculations. J. Comput. Phys. 35 (1), 110145.
Sgura, I., Bozzini, B. & Lacitignola, D. 2012 Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Maths 236, 41324147.
Shadid, J. N., Pawlowski, R. P., Banks, J. W., Chacónc, L., Lin, P. T. & Tuminaro, R. S. 2010 Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys. 229 (20), 76497671.
Smith, B., Bjorstad, P. & Gropp, W. 2004 Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press.
Stangeby, P. C. 2000 The Plasma Boundary of Magnetic Fusion Devices. Institute of Physics Publishing.
Tskhakaya, D. 2012 On recent massively parallelized PIC simulations of the SOL. Contrib. Plasma Phys. 52 (5–6), 490499.
Tskhakaya, D., Groth, M. & JET EFDA Contributors 2015 Modelling of tungsten re-deposition coefficient. J. Nucl. Mater. 463, 624628.
Wesson, J. & Campbell, D. J. 1997 Tokamaks. Clarendon.
Yanenko, N. N. 1971 The Method of Fractional Steps. Springer.
MathJax is a JavaScript display engine for mathematics. For more information see


Related content

Powered by UNSILO

Alternating direction implicit type preconditioners for the steady state inhomogeneous Vlasov equation

  • Markus Gasteiger (a1), Lukas Einkemmer (a1), Alexander Ostermann (a1) and David Tskhakaya (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.