Adams, M. F., Samtaney, R. & Brandt, A.
2010
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics. J. Comput. Phys.
229 (18), 6208–6219.

Arber, T. D. & Vann, R. G. L.
2002
A critical comparison of Eulerian-grid-based Vlasov solvers. J. Comput. Phys.
180 (1), 339–357.

Batishchev, O. V., Xu, X. Q., Byers, J. A., Cohen, R. H., Krasheninnikov, S. I., Rognlien, T. D. & Sigmar, D. J.
1996
Kinetic effects on particle and heat fluxes in detached plasmas. Phys. Plasmas
3 (9), 3386–3396.

Briggs, W. L., Henson, V. E. & McCormick, S. F.
2000
A Multigrid Tutorial. SIAM.

Casas, F., Crouseilles, N., Faou, E. & Mehrenberger, M.
2017
High-order Hamiltonian splitting for the Vlasov–Poisson equations. Numer. Math.
135, 769–801.

Chacón, L.
2008
An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamics. Phys. Plasmas
15 (5), 056103.

Chacón, L. & Knoll, D. A.
2003
A 2D high-
Hall MHD implicit nonlinear solver. J. Comput. Phys.
188 (2), 573–592.

Cheng, C. Z. & Knorr, G.
1976
Integration of the Vlasov equation in configuration space. J. Comput. Phys.
22 (3), 330–351.

Chodura, R.
1992
Kinetic effects in the scrape off layer. Contrib. Plasma Phys.
32, 219–230.

Christlieb, A.2015 Method of lines transpose an implicit Vlasov Maxwell solver for plasmas. *Tech. Rep.* ADA627056, DTIC Document.

Crouseilles, N., Einkemmer, L. & Faou, E.
2015
Hamiltonian splitting for the Vlasov–Maxwell equations. J. Comput. Phys.
283, 224–240.

Crouseilles, N., Einkemmer, L. & Faou, E.
2016
An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit. Comput. Phys. Commun.
209, 13–26.

Crouseilles, N., Mehrenberger, M. & Sonnendrücker, E.
2010
Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys.
229 (6), 1927–1953.

Einkemmer, L.2016 Structure preserving numerical methods for the Vlasov equation. Preprint, arXiv:1601.02280.
Einkemmer, L. & Ostermann, A.
2014a
Convergence analysis of a discontinuous Galerkin/Strang splitting approximation for the Vlasov–Poisson equations. SIAM J. Numer. Anal.
52 (2), 757–778.

Einkemmer, L. & Ostermann, A.
2014b
Convergence analysis of Strang splitting for Vlasov-type equations. SIAM J. Numer. Anal.
52 (1), 140–155.

Filbet, F., Sonnendrücker, E. & Bertrand, P.
2001
Conservative numerical schemes for the Vlasov equation. J. Comput. Phys.
172 (1), 166–187.

Gasteiger, M. & Tskhakaya, D.
2014
On the electron distribution function in the edge plasma. Contrib. Plasma Phys.
54, 503–507.

Hujeirat, A.
1998
IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems. Mon. Not. R. Astron. Soc.
298 (1), 310–320.

Janev, R. K., Reiter, D. & Samm, U.2004 Collision processes in low-temperature hydrogen plasmas. *Tech. Rep.* 4105, Zentralbibliothek, Forschungszentrum Jülich.

Karney, C. F. F.
1986
Fokker–Planck and quasilinear codes. Comput. Phys. Rep.
4 (3), 183–244.

Klimas, A. J. & Farrell, W. M.
1994
A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys.
110 (1), 150–163.

Landreman, M. & Ernst, D. R.
2012
Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal. Plasma Phys. Control. Fusion
54 (11), 115006.

Lieberman, M. A. & Lichtenberg, A. J.
2005
Principles of Plasma Discharges and Materials Processing. Wiley.

Lindemuth, I. & Killeen, J.
1973
Alternating direction implicit techniques for two-dimensional magnetohydrodynamic calculations. J. Comput. Phys.
13 (2), 181–208.

Müller, E. H & Scheichl, R.
2014
Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Q. J. R. Meteorol. Soc.
140 (685), 2608–2624.

Qiu, J.-M. & Christlieb, A.
2010
A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys.
229 (4), 1130–1149.

Qiu, J.-M. & Shu, C.-W.
2011
Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys.
230 (23), 8386–8409.

Reynolds, D. R., Samtaney, R. & Tiedeman, H. C.
2012
A fully implicit Newton–Krylov–Schwarz method for tokamak magnetohydrodynamics: Jacobian construction and preconditioner formulation. Comput. Sci. Disc.
5 (1), 014003.

Reynolds, D. R., Samtaney, R. & Woodward, C. S.
2010
Operator-based preconditioning of stiff hyperbolic systems. SIAM J. Sci. Comput.
32 (1), 150–170.

Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L.
1957
Fokker–Planck equation for an inverse-square force. Phys. Rev.
107, 1–6.

Rossmanith, J. A. & Seal, D. C.
2011
A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys.
230 (16), 6203–6232.

Saad, Y.
2003
Iterative Methods for Sparse Linear Systems, 2nd edn.
SIAM.

Sauter, O., Harvey, R. W. & Hinton, F. L.
1994
A 3-D Fokker–Planck code for studying parallel transport in tokamak geometry with arbitrary collisionalities and application to neoclassical resistivity. Contrib. Plasma Phys.
34 (2–3), 169–174.

Schnack, D. & Killeen, J.
1980
Nonlinear, two-dimensional magnetohydrodynamic calculations. J. Comput. Phys.
35 (1), 110–145.

Sgura, I., Bozzini, B. & Lacitignola, D.
2012
Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Maths
236, 4132–4147.

Shadid, J. N., Pawlowski, R. P., Banks, J. W., Chacónc, L., Lin, P. T. & Tuminaro, R. S.
2010
Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys.
229 (20), 7649–7671.

Smith, B., Bjorstad, P. & Gropp, W.
2004
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press.

Stangeby, P. C.
2000
The Plasma Boundary of Magnetic Fusion Devices. Institute of Physics Publishing.

Tskhakaya, D.
2012
On recent massively parallelized PIC simulations of the SOL. Contrib. Plasma Phys.
52 (5–6), 490–499.

Tskhakaya, D., Groth, M. & JET EFDA Contributors
2015
Modelling of tungsten re-deposition coefficient. J. Nucl. Mater.
463, 624–628.

Wesson, J. & Campbell, D. J.
1997
Tokamaks. Clarendon.

Yanenko, N. N.
1971
The Method of Fractional Steps. Springer.