Skip to main content
×
Home

Turbulence Heating ObserveR – satellite mission proposal

  • A. Vaivads (a1), A. Retinò (a2), J. Soucek (a3), Yu. V. Khotyaintsev (a1), F. Valentini (a4), C. P. Escoubet (a5), O. Alexandrova (a6), M. André (a1), S. D. Bale (a7) (a8), M. Balikhin (a9), D. Burgess (a10), E. Camporeale (a11), D. Caprioli (a12), C. H. K. Chen (a13), E. Clacey (a14), C. M. Cully (a15), J. De Keyser (a16), J. P. Eastwood (a13), A. N. Fazakerley (a17), S. Eriksson (a18), M. L. Goldstein (a19), D. B. Graham (a1), S. Haaland (a20) (a21), M. Hoshino (a22), H. Ji (a23), H. Karimabadi (a24), H. Kucharek (a25), B. Lavraud (a26) (a27), F. Marcucci (a28), W. H. Matthaeus (a29), T. E. Moore (a19), R. Nakamura (a30), Y. Narita (a30), Z. Nemecek (a31), C. Norgren (a1), H. Opgenoorth (a1), M. Palmroth (a32), D. Perrone (a33), J.-L. Pinçon (a34), P. Rathsman (a14), H. Rothkaehl (a35), F. Sahraoui (a2), S. Servidio (a4), L. Sorriso-Valvo (a36), R. Vainio (a37), Z. Vörös (a30) and R. F. Wimmer-Schweingruber (a38)...
Abstract

The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’. THOR has been selected by European Space Agency (ESA) for the study phase.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Turbulence Heating ObserveR – satellite mission proposal
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Turbulence Heating ObserveR – satellite mission proposal
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Turbulence Heating ObserveR – satellite mission proposal
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: andris.vaivads@gmail.com
References
Hide All
von Alfthan S., Pokhotelov D., Kempf Y., Hoilijoki S., Honkonen I., Sandroos A. & Palmroth M. 2014 Vlasiator: first global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath. J. Atmos. Sol.-Terr. Phys. 120, 2435.
Borovsky J. E. & Gary S. P. 2014 How important are the alpha-proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere? J. Geophys. Res. 119 (7), 2014JA019758.
Burgess D., Lucek E. A., Scholer M., Bale S. D., Balikhin M. A., Balogh A., Horbury T. S., Krasnoselskikh V. V., Kucharek H., Lembège B. et al. 2005 Quasi-parallel shock structure and processes. Space Sci. Rev. 118 (1–4), 205222.
Camporeale E. & Burgess D. 2011 The dissipation of solar wind turbulent fluctuations at electron scales. Astrophys. J. 730 (2), 114.
Caprioli D. & Spitkovsky A. 2014 Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783 (2), 91.
Chandran B. D. G., Li B., Rogers B. N., Quataert E. & Germaschewski K. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720 (1), 503.
Chen C. H. K., Sorriso-Valvo L., šafránková J. & Němeček Z. 2014 Intermittency of solar wind density fluctuations from ion to electron scales. Astrophys. J. Lett. 789 (1), L8.
Eastwood J. P., Lucek E. A., Mazelle C., Meziane K., Narita Y., Pickett J. & Treumann R. A. 2005 The foreshock. Space Sci. Rev. 118 (1–4), 4194.
Haynes C. T., Burgess D. & Camporeale E. 2014 Reconnection and electron temperature anisotropy in sub-proton scale plasma turbulence. Astrophys. J. 783 (1), 38.
Karimabadi H., Roytershteyn V., Wan M., Matthaeus W. H., Daughton W., Wu P., Shay M., Loring B., Borovsky J., Leonardis E. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012303.
Kasper J. C., Lazarus A. J. & Gary S. P. 2008 Hot solar-wind helium: direct evidence for local heating by Alfvén–Cyclotron dissipation. Phys. Rev. Lett. 101 (26), 261103.
Liu Y., Richardson J. D., Belcher J. W. & Kasper J. C. 2007 Temperature anisotropy in a shocked plasma: mirror-mode instabilities in the heliosheath. Astrophys. J. Lett. 659 (1), L65.
Lucek E. A., Constantinescu D., Goldstein M. L., Pickett J., Pinçon J. L., Sahraoui F., Treumann R. A. & Walker S. N. 2005 The magnetosheath. Space Sci. Rev. 118 (1–4), 95152.
Lundin R., Haerendel G. & Grahn S. 1994 The Freja science mission. Space Sci. Rev. 70, 405419.
Marsch E. 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.
Perri S., Goldstein M. L., Dorelli J. C. & Sahraoui F. 2012 Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109 (19), 191101.
Perrone D., Valentini F., Servidio S., Dalena S. & Veltri P. 2013 Vlasov simulations of multi-ion plasma turbulence in the solar wind. Astrophys. J. 762 (2), 99.
Perrone D., Valentini F., Servidio S., Dalena S. & Veltri P. 2014 Analysis of intermittent heating in a multi-component turbulent plasma. Eur. Phys. J. D 68, 209.
Retinò A., Sundkvist D., Vaivads A., Mozer F., André M. & Owen C. J. 2007 In situ evidence of magnetic reconnection in turbulent plasma. Nat. Phys. 3, 236238.
Richardson J. D., Paularena K. I., Lazarus A. J. & Belcher J. W. 1995 Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett. 22 (4), 325328.
šafránková J., Němeček Z., Přech L. & Zastenker G. N. 2013 Ion kinetic scale in the solar wind observed. Phys. Rev. Lett. 110 (2), 025004.
Sahraoui F., Goldstein M. L., Robert P. & Khotyaintsev Yu. V. 2009 Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102 (23), 231102.
Servidio S., Matthaeus W. H., Shay M. A., Cassak P. A. & Dmitruk P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102 (11), 115003.
Servidio S., Valentini F., Califano F. & Veltri P. 2012 Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108 (4), 045001.
Soucek J., Ahlen L., Bale S., Bonnell J., Boudin N., Brienza D., Carr C., Cipriani F., Escoubet C. P., Fazakerley A. et al. 2016 EMC aspects of turbulence heating observer (THOR) spacecraft. In 2016 ESA Workshop on Aerospace EMC (Aerospace EMC), pp. 14.
Sundkvist D., Retinò A., Vaivads A. & Bale S. D. 2007 Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99 (2), 025004.
Tenbarge J. M. & Howes G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771 (2), L27.
Vaivads A., Andersson G., Bale S. D., Cully C. M., Keyser J. De, Fujimoto M., Grahn S., Haaland S., Ji H., Khotyaintsev Y. V. et al. 2011 EIDOSCOPE: particle acceleration at plasma boundaries. Exp. Astron. 33 (2–3), 491527.
Valentini F., Servidio S., Perrone D., Califano F., Matthaeus W. H. & Veltri P. 2014 Hybrid Vlasov–Maxwell simulations of two-dimensional turbulence in plasmas. Phys. Plasmas 21 (8), 082307.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 84
Total number of PDF views: 431 *
Loading metrics...

Abstract views

Total abstract views: 858 *
Loading metrics...

* Views captured on Cambridge Core between 22nd September 2016 - 17th November 2017. This data will be updated every 24 hours.