Skip to main content Accessibility help

Straight and linearly tapered capillaries produced by femtosecond laser micromachining

  • S. M. WIGGINS (a1), M. P. REIJNDERS (a1) (a2), S. ABUAZOUM (a1), K. HART (a1), G. VIEUX (a1), G. H. WELSH (a1), R. C. ISSAC (a1), X. YANG (a1), D. R. JONES (a1) and D. A. JAROSZYNSKI (a1)...


Gas-filled capillary discharge waveguides are a commonly employed medium in laser–plasma interaction applications, such as the laser wakefield accelerator, because they can simultaneously guide high-power laser pulses while acting as the medium for acceleration. In this paper, the production of both straight and linearly tapered capillaries using a femtosecond laser micromachining technique is presented. A tapered capillary is shown to possess a smooth variation in diameter (from 305 μm to 183 μm) along its entire 40 mm length, which would lead to a longitudinal plasma density gradient, thereby dramatically improving the laser–plasma interaction efficiency in applications. Efficient guiding with up to 82% energy transmission of the fundamental Gaussian mode of a low intensity, 50 fs duration laser pulse is shown for both types of capillary waveguide.



Hide All
[1]Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1997 IEEE J. Quantum Electron. 33, 1879.
[2]Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.
[3]Joshi, C. 2007 Phys. Plasmas 14, 055501.
[4]Leemans, W. P., Nagler, B, Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Nature Phys. 2, 696.
[5]Cipiccia, S., Islam, M. R., Ersfeld, B., Shanks, R. P., Brunetti, E., Vieux, G., Yang, X., Issac, R. C., Wiggins, S. M., Welsh, G. H., Anania, M. P., Maneuski, D., Montgomery, R., Smith, G., Hoek, M., Hamilton, D. J., Lemos, N. R. C., Symes, D., Rajeev, P. P., O'Shea, V., Dias, J. M. and Jaroszynski, D. A. 2011 Nature Phys. 7, 867.
[6]Malkin, V. M., Shvets, G. and Fisch, N. J. 2000 Phys. Rev. Lett. 84, 1208.
[7]Ersfeld, B. and Jaroszynski, D. A. 2005 Phys. Rev. Lett. 95, 165002.
[8]Vieux, G., Lyachev, A., Yang, X., Ersfeld, B., Farmer, J. P., Brunetti, E., Issac, R. C., Raj, G., Welsh, G. H., Wiggins, S. M. and Jaroszynski, D. A. 2011 New J. Phys. 13, 063042.
[9]Malka, V., Faure, J., Gauduel, Y. A., Lefebvre, E., Rousse, A. and Phuoc, K. T. 2008 Nature Phys. 4 447.
[10]Schroeder, C. B., Esarey, E., Geddes, C. G. R., Benedetti, C. and Leemans, W. P. 2010 Phys. Rev. ST Accel. Beams 13, 101301.
[11]Strickland, D. and Mourou, G. 1985 Opt. Commun. 56, 219.
[12]Ross, I. N., Matousek, P., Towrie, M., Langley, A. J. and Collier, J. L. 1997 Opt. Commun. 144, 125.
[13]Mourou, G. A., Tajima, T. and Bulanov, S. V. 2006 Rev. Mod. Phys. 78, 309.
[14]Spence, D. J. and Hooker, S. M. 2001 Phys. Rev. E 63 015401.
[15]Gattass, R. R. and Mazur, E. 2008 Nature Photonics 2, 219.
[16]Jaroszynski, D. A., Bingham, R., Brunetti, E., Ersfeld, B., Gallacher, J., van der Geer, B., Issac, R., Jamison, S. P., Jones, D., de Loos, M., Lyachev, A., Pavlov, V., Reitsma, A., Saveliev, Y., Vieux G. and Wiggins, S. M. 2006 Phil. Trans. R. Soc. A 364 689.
[17]Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W. and Perry, M. D. 1996 Phys. Rev. B 53 1749.
[18]Kaganovich, D., Sasorov, P., Cohen, C. and Zigler, A. 1999 Appl. Phys. Lett. 75, 772.
[19]Katsouleas, T. 1986 Phys. Rev. A 33 2056.
[20]Sprangle, P., Penano, J. R., Hafizi, B., Hubbard, R. F., Ting, A., Gordon, D. F., Zigler, A. and Antonsen, T. M. Jr., 2002 Phys. Plasmas 9, 2364.
[21]Rittershofer, W., Schroeder, C. B., Esarey, E., Grüner, F. J. and Leemans, W. P. 2010 Phys. Plasmas 17, 063104.
[22]Abuazoum, S., Wiggins, S. M., Issac, R. C., Welsh, G. H., Vieux, G., Ganciu, M. and Jaroszynski, D. A. 2011 Rev. Sci. Instrum. 82, 063505.
[23]Jaroszynski, D. A., Ersfeld, B., Giraud, G., Jamison, S., Jones, D. R., Issac, R. C., McNeil, B. W. J., Phelps, A. D. R., Robb, G. R. M., Sandison, H., Vieux, G., Wiggins, S. M. and Wynne, K. 2000 Nucl. Instrum. Methods Phys. Res., Sec. A 445 317.
[24]Travis, J and Kring, J. 2006 Labview for Everyone: Graphical Programming Made Easy and Fun, 3rd edition, Prentice Hall; National Instruments.
[25]Ashkenazy, J., Kipper, R. and Caner, M. 1991 Phys. Rev. A 43 5568.
[26]Brobova, N. A., Esaulov, A. A., Sakai, J.-I., Sasorov, P. V., Spence, D. J., Butler, A., Hooker, S. M. and Bulanov, S. V. 2001 Phys. Rev. E 65 016407.
[27]Gonsalves, A. J., Rowlands-Rees, T. P., Broks, B. H. P., van der Mullen, J. J. A. M. and Hooker, S. M. 2007 Phys. Rev. Lett. 98, 025002.
[28]Jang, D. G., Kim, M. S., Nam, I. H., Uhm, H. S. and Suk, H. 2011 Appl. Phys. Lett. 99, 141502.
[29]Broks, B. H. P., Garloff, K. and van der Mullen, J. J. A. M. 2005 Phys. Rev. E 71 016401.
[30]Torres, J., Palomares, J. M., Sola, A., van der Mullen, J. J. M. and Gamero, A. 2007 J. Phys. D.: Appl. Phys. 40, 5929.
[31]Abuazoum, S., Wiggins, S. M., Ersfeld, B., Hart, K., Vieux, G., Yang, X., Welsh, G. H., Issac, R. C., Reijnders, M. P., Jones, D. R. and Jaroszynski, D. A. 2012 Appl. Phys. Lett. 100, 014106.
[32]Hughes, T. P. 1975 Plasmas and Laser Light. Adam Hilger.
[33]Hora, H. and Wilhelm, H. 1970 Nucl. Fusion 10, 111.
[34]Borowiec, A., Mackenzie, M., Weatherly, G. C. and Haugen, H. K. 2003 Appl. Phys. A 76 201.
MathJax is a JavaScript display engine for mathematics. For more information see

Straight and linearly tapered capillaries produced by femtosecond laser micromachining

  • S. M. WIGGINS (a1), M. P. REIJNDERS (a1) (a2), S. ABUAZOUM (a1), K. HART (a1), G. VIEUX (a1), G. H. WELSH (a1), R. C. ISSAC (a1), X. YANG (a1), D. R. JONES (a1) and D. A. JAROSZYNSKI (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed