Skip to main content

Symmetries of a reduced fluid-gyrokinetic system

  • R. L. White (a1), R. D. Hazeltine (a2) and N. F. Loureiro (a1)

Symmetries of a fluid-gyrokinetic model are investigated using Lie group techniques. Specifically, the nonlinear system constructed by Zocco & Schekochihin (Phys. Plasmas, vol. 18, 2011, 102309), which combines nonlinear fluid equations with a drift-kinetic description of parallel electron dynamics, is studied. Significantly, this model is fully gyrokinetic, allowing for arbitrary $k_{\bot }\unicode[STIX]{x1D70C}_{i}$ , where $k_{\bot }$ is the perpendicular wave vector of the fluctuations and $\unicode[STIX]{x1D70C}_{i}$ the ion gyroradius. The model includes integral operators corresponding to gyroaveraging as well as the moment equations relating fluid variables to the kinetic distribution function. A large variety of exact symmetries is uncovered, some of which have unexpected form. Using these results, new nonlinear solutions are constructed, including a helical generalization of the Chapman–Kendall solution for a collapsing current sheet.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Symmetries of a reduced fluid-gyrokinetic system
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Symmetries of a reduced fluid-gyrokinetic system
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Symmetries of a reduced fluid-gyrokinetic system
      Available formats
Corresponding author
Email address for correspondence:
Hide All
Beer, M. & Hammett, G. W. 1996 Toroidal gyrofluid equations for simulations of tokamak turbulence. Phys. Plasmas 3, 4046.
Bian, N. H. & Kontar, E. P. 2010 A gyrofluid description of Alfvénic turbulence and its parallel electric field. Phys. Plasmas 17, 062308.
Biskamp, D. 2003 Magnetohydrodynamic Turbulence. Cambridge University Press.
Brizard, A. 1992 Nonlinear gyrofluid description of turbulent magnetized plasmas. Phys. Fluids B 4, 1213.
Burby, J. W. 2017 Magnetohydrodynamic motion of a two-fluid plasma. Phys. Plasmas 24 (8), 082104.
Cantwell, B. J. 2002 Introduction to Symmetry Analysis. Cambridge University Press.
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20, 719.
Catto, P. J., Tang, W. M. & Baldwin, D. E. 1981 Generalized gyrokinetics. Plasma Phys. 23, 639.
Chapman, S. & Kendall, P. C. 1963 Liquid instability and energy transformation near a magnetic neutral line: a soluble nonlinear hydromagnetic problem. Proc. R. Soc. Lond. A 271, 435448.
Charidakos, I. K., Lingam, M., Morrison, P. J., White, R. L. & Wurm, A. 2014 Action principles for extended magnetohydrodynamic models. Phys. Plasmas 21 (9), 092118.
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. A 236, 112118.
Connor, J. W. & Taylor, J. B. 1977 Scaling laws for plasma confinement. Nucl. Fusion 17 (5), 1047.
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7 (3), 969983.
Dorland, W. & Hammett, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812.
Dubin, D. H., Krommes, J. A., Oberman, C. & Lee, W. W. 1983 Nonlinear gyrokinetic equations. Phys. Fluids 26, 3524.
Elsasser, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183.
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502.
Gaeta, G. & Rodríguez, M. A. 1996 Discrete symmetries of differential equations. J. Phys. A 29 (4), 859.
Grad, H.1956 A guiding center fluid. AEC Report TID-7503, p. 495.
Hahm, T. S., Lee, W. W. & Brizard, A. 1988 Nonlinear gyrokinetic theory for finite-beta plasmas. Phys. Fluids 31, 19401948.
Hammett, G. W., Beer, M., Dorland, W., Cowley, S. C. & Smith, S. A. 1993 Developments in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion 35, 973.
Hammett, G. W., Dorland, W. & Perkins, F. W. 1992 Fluid models of phase mixing, Landau damping, and nonlinear gyrokinetic dynamics. Phys. Fluids B 4, 2052.
Hammett, G. W. & Perkins, F. W. 1990 Fluid models for Landau damping with application to the ion-temperature-gradient instability. Phys. Rev. Lett. 64, 3019.
Hatch, D. R., Jenko, F., Bratanov, V. & Banon Navarro, A. 2014 Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence. J. Plasma Phys. 80, 531.
Janvier, M., Aulanier, G., Pariat, E. & Démoulin, P. 2013 The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77.
Kadomtsev, B. B. & Pogutse, O. P. 1974 Nonlinear helical perturbations of a plasma in the tokamak. Sov. Phys. JETP 38, 283.
Kanekar, A., Schekochihin, A. A., Dorland, W. & Loureiro, N. F. 2014 Fluctuation-dissipation relations for a plasma-kinetic Langevin equation. J. Plasma Phys. 81 (01), 305810104; doi:10.1017/S0022377814000622.
Kovalev, V. F., Krivenko, S. V. & Pustovalev, V. V. 1996 Symmetry group of Maxwell–Vlasov equations in plasma theory. J. Nonlinear Math. Phys. 3 (1–2), 175180.
Kruskal, M. D. & Oberman, C. R. 1958 On the stability of plasma in static equilibrium. Phys. Fluids 1 (4), 275.
Lee, W. W. 1983 Gyrokinetic approach in particle simulation. Phys. Fluids 26, 555.
Lee, W. W. 1987 Gyrokinetic particle simulation model. J. Comput. Phys. 72, 243.
Loureiro, N. F., Cowley, S. C., Dorland, W. D., Haines, M. G. & Schekochihin, A. A. 2005 X-point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev. Lett. 95, 235003.
Loureiro, N. F., Dorland, W., Fazendeiro, L., Kanekar, A., Mallet, A., Vilelas, M. S. & Zocco, A. 2016 Viriato: a Fourier–Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics. Comput. Phys. Commun. 206, 45.
Morrison, P. J., Lingam, M. & Acevedo, R. 2014 Hamiltonian and action formalisms for two-dimensional gyroviscous magnetohydrodynamics. Phys. Plasmas 21 (8), 082102.
Olver, P. J. 1993 Applications of Lie Groups to Differential Equations. Springer.
Qin, H. & Davidson, R. C. 2006 Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency. Phys. Rev. Spec. Top. Accel. Beams 9, 054001.
Ramos, J. J. 2010 Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. I. Electron theory. Phys. Plasmas 17, 082502.
Ramos, J. J. 2011 Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. II. Ion theory. Phys. Plasmas 18, 102506.
Rayleigh, L. 1891 Dynamical problems in illustration of the theory of gases. Phil. Mag. 32, 424.
Roberts, D. 1985 The general Lie group and similarity solutions for the one-dimensional Vlasov–Maxwell equations. J. Plasma Phys. 33 (2), 219.
Rosenbluth, M. N. & Rostoker, N. 1959 Theoretical structure of plasma equations. Phys. Fluids 2 (1), 23.
Rutherford, P. H. & Frieman, E. A. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569.
Schekochihin, A. A., Parker, J. T., Highcock, E. G., Dellar, P. J., Dorland, W. & Hammett, G. W. 2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82, 905820212.
Snyder, P. B. & Hammett, G. W. 2001 Electromagnetic effects on plasma microturbulence. Phys. Plasmas 8, 744.
Strauss, H. R. 1976 Nonlinear, three dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134140.
Taylor, J. B. & Hastie, R. J. 1968 Stability of general plasma equilibria-I formal theory. Phys. Fluids 10, 479.
Uzdensky, D. A. & Loureiro, N. F. 2016 Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability. Phys. Rev. Lett. 116, 105003.
Waelbroeck, F. L. 1989 Current sheets and the nonlinear growth of the kink-tearing mode. Phys. Fluids B 1, 2372.
Waelbroeck, F. L. 1993 Onset of the sawtooth crash. Phys. Rev. Lett. 70, 3259.
Waelbroeck, F. L., Hazeltine, R. D. & Morrison, P. J. 2009 A Hamiltonian electromagnetic gyrofluid model. Phys. Plasmas 16, 032109.
Watanabe, T.-H. & Sugama, H. 2004 Kinetic simulation of steady states of ion temperature gradient driven turbulence with weak collisionality. Phys. Plasmas 11 (4), 14761483.
White, R. L. & Hazeltine, R. D. 2009 Symmetry analysis of the Grad–Shafranov equation. Phys. Plasmas 16, 123101.
White, R. L. & Hazeltine, R. D. 2017 Analysis of the Hermite spectrum in plasma turbulence. Phys. Plasmas 24, 102315.
Zocco, A., Loureiro, N. F., Dickinson, D., Numata, R. & Roach, C. M. 2015 Kinetic microtearing modes and reconnecting modes in strongly magnetised slab plasmas. Plasma Phys. Control. Fusion 57, 065008.
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed