Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-x9ds4 Total loading time: 0.247 Render date: 2023-02-05T07:19:13.527Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

SUR LE COMPTAGE DES FIBRÉS DE HITCHIN NILPOTENTS

Published online by Cambridge University Press:  07 August 2014

Pierre-Henri Chaudouard
Affiliation:
Université Paris Diderot (Paris 7), Institut de mathématiques de Jussieu-Paris Rive gauche, UMR 7586, Bâtiment Sophie Germain, Case 7012, F-75205 Paris Cedex 13, France (Pierre-Henri.Chaudouard@imj-prg.fr)
Gérard Laumon
Affiliation:
CNRS et université Paris-Sud, UMR 8628, Mathématique, Bâtiment 425, F-91405 Orsay Cedex, France (Gerard.Laumon@math.u-psud.fr)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cet article est une contribution à la fois au calcul du nombre de fibrés de Hitchin sur une courbe projective et à l’explicitation de la partie nilpotente de la formule des traces d’Arthur-Selberg pour une fonction test très simple. Le lien entre les deux questions a été établi dans [Chaudouard, Sur le comptage des fibrés de Hitchin. À paraître aux actes de la conférence en l’honneur de Gérard Laumon]. On décompose cette partie nilpotente en une somme d’intégrales adéliques indexées par les orbites nilpotentes. Pour les orbites de type «régulières par blocs», on explicite complètement ces intégrales en termes de la fonction zêta de la courbe.

This paper is concerned with two problems. One is to count Hitchin bundles on a projective curve and the other is to get an explicit formula for the nilpotent part of the Arthur–Selberg trace formula for a simple test function. The fact that the two problems are indeed related has been noticed in a previous paper cf. [Chaudouard, Sur le comptage des fibrés de Hitchin. À paraître aux actes de la conférence en l’honneur de Gérard Laumon]. We expand the nilpotent part of the Arthur–Selberg trace formula in a sum of adelic integrals indexed by nilpotent orbits. For «regular by blocks» orbits, we get an explicit formula for these integrals in terms of the zeta function of the curve.

Type
Research Article
Copyright
© Cambridge University Press 2014 

References

Bibliographie

Arthur, J., A trace formula for reductive groups I. Terms associated to classes in G (ℚ), Duke Math. J. 45 (1978), 911952.CrossRefGoogle Scholar
Arthur, J., The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 174.CrossRefGoogle Scholar
Arthur, J., A measure on the unipotent variety, Canad. J. Math. 37 (1985), 12371274.CrossRefGoogle Scholar
Arthur, J., A local trace formula, Publ. Math. Inst. Hautes Études 73 (1991), 596.CrossRefGoogle Scholar
Arthur, J., An introduction to the trace formula, in Harmonic analysis, the trace formula, and Shimura varieties, (Clay Math. Proc.), Volume 4, pp. 1263 (American Mathematical Society, Providence, RI, 2005).Google Scholar
Chaudouard, P.-H., Sur le comptage des fibrés de Hitchin. À paraître aux actes de la conférence en l’honneur de Gérard Laumon.Google Scholar
García-Prada, O., Heinloth, J. et Schmitt, A., On the motives of moduli of chains and Higgs bundles. ArXiv e-prints, April 2011.Google Scholar
Harder, G., Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 3354.CrossRefGoogle Scholar
Hausel, T. et Rodriguez-Villegas, F., Mixed Hodge polynomials of character varieties, Invent. Math. 174(3) (2008), 555624; with an appendix by Nicholas M. Katz.CrossRefGoogle Scholar
Laumon, G., Cohomology of Drinfeld modular varieties. Part II, Cambridge Studies in Advanced Mathematics, Volume 56 (Cambridge University Press, Cambridge, 1997); Automorphic forms, trace formulas and Langlands correspondence, with an appendix by Jean-Loup Waldspurger.CrossRefGoogle Scholar
Lusztig, G. et Spaltenstein, N., Induced unipotent classes, J. Lond. Math. Soc. (2) 19 (1979), 4152.CrossRefGoogle Scholar
Mozgovoy, S., Solutions of the motivic ADHM recursion formula. ArXiv e-prints, April 2011.Google Scholar
Nitsure, N., Moduli space of semistable pairs on a curve, Proc. Lond. Math. Soc. (3) 62(2) (1991), 275300.CrossRefGoogle Scholar
You have Access
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SUR LE COMPTAGE DES FIBRÉS DE HITCHIN NILPOTENTS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

SUR LE COMPTAGE DES FIBRÉS DE HITCHIN NILPOTENTS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

SUR LE COMPTAGE DES FIBRÉS DE HITCHIN NILPOTENTS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *