Skip to main content
×
×
Home

The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations

  • Kathleen Y. Haaland (a1), Richard P. Dum (a2), Pratik K. Mutha (a3), Peter L. Strick (a2) and Alexander I. Tröster (a4)...
Abstract
Abstract

This paper highlights major developments over the past two to three decades in the neuropsychology of movement and its disorders. We focus on studies in healthy individuals and patients, which have identified cognitive contributions to movement control and animal work that has delineated the neural circuitry that makes these interactions possible. We cover advances in three major areas: (1) the neuroanatomical aspects of the “motor” system with an emphasis on multiple parallel circuits that include cortical, corticostriate, and corticocerebellar connections; (2) behavioral paradigms that have enabled an appreciation of the cognitive influences on the preparation and execution of movement; and (3) hemispheric differences (exemplified by limb praxis, motor sequencing, and motor learning). Finally, we discuss the clinical implications of this work, and make suggestions for future research in this area. (JINS, 2017, 23, 768–777)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The Neuropsychology of Movement and Movement Disorders: Neuroanatomical and Cognitive Considerations
      Available formats
      ×
Copyright
Corresponding author
Correspondence and reprint requests to: Kathleen Y. Haaland, Department of Psychiatry & Behavioral Sciences MSC09 5030, 1 University of New Mexico, Albuquerque, NM 87131-0001. E-mail: khaaland@unm.edu
References
Hide All
Aflalo T., Kellis S., Klaes C., Lee B., Shi Y., Pejsa K., & Andersen R.A. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 348, 906910.
Amiez C., & Petrides M. (2014). Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cerebral Cortex, 24(3), 563578.
Ashby F.G., Alfonso-Reese L.A., Turken A.U., & Waldron E.M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105(3), 442481.
Bi Y., Han Z., Zhong S., Ma Y., Gong G., Huang R., & Caramazza A. (2015). The white matter structural network underlying human tool use and tool understanding. Journal of Neuroscience, 35(17), 68226835. doi: 10.1523/JNEUROSCI.3709-14.2015
Boecker H., Jankowski J., Ditter P., & Scheef L. (2008). A role of the basal ganglia and midbrain nuclei for initiation of motor sequences, NeuroImage, 39, 13561369. doi: 10.1016/j.neuroimage.2007.09.069
Borchert R.J., Rittman T., Passamonti L., Ye Z., Sarni S., Jones S.P., & Rowe J.B. (2016). Atomoxetine enhances connectivity of prefrontal networks in Parkinson’s Disease. Neuropsychopharmacology, 41, 21712177.
Buccino G., Vogt S., Ritzl A., Fink G.R., Zilles K., Freund H.J., & Rizzolatti G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323334.
Buneo C.A., & Andersen R.A. (2006). The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44, 25942606.
Buxbaum L.J., Haaland K.Y., Hallett M., Wheaton L., Heilman K.M., Rodriguez A., & Gonzalez Rothi L.J. (2008). Treatment of limb apraxia: Moving forward to improved action. American Journal of Physical Medicine & Rehabilitation, 87, 149161. doi: 10.1097/PHM.0b013e31815e6727
Buxbaum L.J., Johnson-Frey S.H., & Bartlett-Willians M. (2005). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917929. doi: 10.1016/j.neuropsychologia.2004.09.006
Buxbaum L.J., & Solenine L. (2010). Action knowledge, visuomotor activation, and embodiment n the two action systems. Annals of the New York Academy of Sciences, 1191, 201218. doi: 10.1111/j.1749-6632.2010.05447.x
Canessa N., Borgo F., Cappa S.F., Perani D., Falini A., Buccino G., & Shallice T. The different neural correlates of action and functional knowledge in semantic memory: An fMRI study. 2008). Cerebral Cortex, 18, 740751. doi: 10.1093/cercor/bhm110
Caspers S., Zilles K., Laird A.R., & Eickhoff S.B. (2009). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 11481167.
Celnik P. (2015). Understanding and modulating motor learning with cerebellar stimulation. Cerebellum, 14(2), 171174.
Della-Maggiore V., Malfait N., Ostry D.J., & Paus T. (2004). Stimulation of the Posterior Parietal Cortex Interferes with Arm Trajectory Adjustments during the Learning of New Dynamics. The Journal of Neuroscience, 24(44), 99719976. doi: 10.1523/JNEUROSCI.2833-04.2004
Delong M.R., & Wichmann T. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. (2015). JAMA Neurology, 72(11), 13541360. doi: 10.1001/jamaneurol.2015.2397
DiRienzo F., Debarnot U., Daligault S., Saruco E., Delpuech C., Doyon J., & Guillot A. (2016). Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Frontiers in Human Neuroscience, 10, 115. doi: 10.3389/fnhum.2016.00315
Doyon J. (2008). Motor sequence learning and movement disorders. Current Opinion in Neurology, 21, 478483.
Doyon J., & Benali H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161167.
Dum R.P., & Strick P.L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667689.
Dum R.P., & Strick P.L. (2005). Motor areas in the frontal lobe: The anatomical substrate for the central control of movement. In A. Riehle & E. Vaadia (Eds.), Motor cortex in voluntary movements (pp. 347). Boca Raton, FL: CRC Press LLC.
Dum R.P., Leventhal D.J., & Strick P.L. (2016). Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proceedings of the National Academy of Sciences of the United States of America, 113, 99229927.
Elsinger C.L., Harrington D.L., & Rao S.M. (2006). Reappraisal of neural circuitry mediating internally generated and externally guided actions. NeuroImage, 31, 11771187.
Foerde K., & Shohamy D. (2011). The role of the basal ganglia in learning and memory: Insight from Parkinson’s disease. Neurobiology of Learning and Memory, 96(4), 624636. doi: 10.1016/j.nlm.2011.08.006
Frank M.J., Seeberger L.C., & O’Reilly R.C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306, 19401943. doi: 10.1126/science.1102941
Fridman E.A., Immisch I., Hanakawa T., Bohlhalter S., Waldvogel D., Kasaku K., & Hallett M. (2006). The role of the dorsal stream for gesture production. NeuroImage, 29, 417428.
Genon S., Li H., Fan L., Müller V.I., Cieslik E.C., Hoffstaedter F., & Eickhoff S.B. (2017). The right dorsal premotor mosaic: Organization, functions, and connectivity. Cerebral Cortex, 27, 20952110.
Glover S., Wall M.B., & Smith A.T. (2012). Distinct cortical networks support the planning and online control of reaching-to-grasp in humans. European Journal of Neuroscience, 35, 909915.
Goldenberg G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47(6), 14491459.
Griffin D.M., Hoffman D.S., & Strick P.L. (2015). Corticomotoneuronal cells are “functionally tuned”. Science, 350(6261), 667670.
Haaland K.Y. (2006). Left hemisphere dominance for movement. The Clinical Neuropsychologist, 20, 609622.
Haaland K.Y., Elsinger C., Mayer A., Durgerian S., & Rao S. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. Journal of Cognitive Neuroscience, 16, 621636.
Haaland K.Y., Harrington D.L., & Knight R.T. (2000). Neural representations of skilled movement. Brain, 123, 23062313.
Haber S.N. (2014). The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 282, 248257.
Haith A.M., Huberdeau D.M., & Krakauer J.W. (2015). The influence of movement preparation time on the expression of visuomotor learning and savings. The Journal of Neuroscience, 35(13), 51095117. doi: 10.1523/JNEUROSCI.3869-14.2015
Hamilton J.M., Haaland K.Y., Adair J.C., & Brandt J. (2003). Ideomotor limb apraxia in Huntington’s Disease: Implications for corticostriate involvement. Neuropsychologia, 41, 18.
Harrington D.L., & Haaland K.Y. (1991b). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114, 99115.
Harrington D.L., & Haaland K.Y. (1991a). Hemispheric specialization: Abnormalities of motor programming. Neuropsychologia, 29, 147163.
Harrington D.L., Rao S.M., Haaland K.Y., Bobholz J.A., Mayer A.R., Binder J.R., & Cox R.W. (2000). Specialized neural systems underlying representations of motor sequencing. Journal of Cognitive Neuroscience, 12, 5677.
Harrington D.L., & Haaland K.Y. (1992). Motor sequencing deficits with left hemisphere damage: Are some cognitive deficits specific to limb apraxia? Brain, 115, 857874.
Haslinger B., Erhard P., Weilke F., Ceballos-Baumann A.O., Bartenstein P., Gräfin von Einsiedel H., & Boecker H. (2002). The role of lateral premotor–cerebellar–parietal circuits in motor sequence control: A parametric fMRI study. Cognitive Brain Research, 13, 159168.
Hauert C.A. (1986). The relationship between motor function and cognition in the developmental perspective. Italian Journal of Neurological Sciences, 5, 101107.
Heilman K.M., Rothi L.J., & Valenstein E. (1982). Two forms of ideomotor apraxia. Neurology, 32, 342346.
Hetu S., Gregoire M., Saimpont A., Coll M.-P., Eugene F., Michon P.-E., & Jackson P.L. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 37, 930949. http://dx.doi.org/10.1016/j.neubiorev.2013.03.017
Hickok G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21, 12291243.
Holl A.K., Wilkinson L., Tabrizi S.J., Painold A., & Jahanshahi M. (2012). Probabilistic classification learning with corrective feedback is selectively impaired in early Huntington’s disease--evidence for the role of the striatum in learning with feedback. Neuropsychologia, 50(9), 21762186. doi: 10.1016/j.neuropsychologia.2012.05.021
Hosp J.A., Pekanovic A., Rioult-Pedotti M.S., & Luft A.R. (2011). Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. Journal of Neuroscience, 31(7), 24812487.
Huang V.S., Haith A., Mazzoni P, Krakauer J.W. (2011). Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models. Neuron, 70, 787801.
Kalenine S., Buxbaum L.P., & Coslett H.B. (2010). Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain, 133, 32693280. doi: 10.1093/brain/awq210
Kelly R.M., & Strick P.L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: Use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 143, 449459.
Kimura D., & Archibald Y. (1974). Motor functions of the left hemisphere. Brain, 97, 337350.
Kincses Z.T., Johansen-Berg H., Tomassini V., Bosnell R., Matthews P.M., & Beckmann C.F. (2008). Model-free characterization of brain functional networks for motor sequence learning using fMRI. NeuroImage, 39, 19501958.
Knowlton B.J., Mangels J.A., & Squire L.R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 13991402.
Kolb B., & Milner B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19, 491503.
Kraeutner S.N., Keeler L.T., & Boe S.G. (2015). Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule. Experimental Brain Research, 234, 397407. doi: 10.1007/s00221-015-4472-9
Krakauer J.W., Ghazanfar A.A., Gomez-Marin A., Maciver M.A., & Poeppe D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93, 480488.
Lefebvre S., Dricot L., Laloux P., Gradkowski W., Desfontaines P., Evrard F., & Vandermeeren Y. (2015). Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients. Frontiers in Human Neuroscience, 9, 118. doi: 10.3389/fnhum.2015.00320
Lefebvre S., Dricot L., Laloux P., Desfountaines P., Evrard F., Peeters A., & Vandermeeren Y. (2017). Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience, 340, 424435.
Leiguarda R. (2001). Limb apraxia: Cortical or subcortical. NeuroImage, 14, S137S141.
Lemon R.N. (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31, 195218.
Lerner T.N., Shilyansky C., Davidson T.J., Evans K.E., Beier K.T., Zalocusky K.A., & Deisseroth K. (2015). Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell, 162(3), 635647.
Luria A.R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books.
MacDonald A.A., Seergobin K.N., Owen A.M., Tamjeedi R., Monchi O., Ganjavi H., & MacDonald P.A. (2013). Differential effects of Parkinson’s disease and dopamine replacement on memory encoding and retrieval. PLoS One, 8(9), e74044. doi: 10.1371/journal.pone.0074044
MacDonald P.A., MacDonald A.A., Seergobin K.N., Tamjeedi R., Ganjavi H., Provost J.S., & Monchi O. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: Support from functional MRI. Brain, 134(Pt 5), 14471463. doi: 10.1093/brain/awr075
Martin T.A., Keating J.G., Goodkin H.P., Bastian A.J., & Thach W.T. (1996). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 11831198.
Mathar D., Wilkinson L., Holl A.K., Neumann J., Deserno L., Villringer A., & Horstmann A. (2017). The role of dopamine in positive and negative prediction error utilization during incidental learning - Insights from Positron Emission Tomography, Parkinson’s disease and Huntington’ disease. Cortex, 90, 149162. doi: 10.1016/j.cortex.2016.09.004
McInnes K., Friesen C., & Boe S. (2015). Specific brain lesions impair explicit motor imagery agility: A systematic review of the evidence. Archives of Physical Medicine and Rehabilitation, 97, 478489. http://dx.doi.org/10.1016/j.apmr.2015.07.012
Merchant H., Harrington D.L., & Meck W.H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313336. doi: 10.1146/annurev-neuro-062012-170349
Middleton F.A., & Strick P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236250.
Michely J., Volz L.J., Barbe M.T., Hoffstaedter F., Viswanathan S., Timmermann L., & Grefkes C. (2015). Dopaminergic modulation of motor network dynamics in Parkinson’s disease. Brain, 138, 664678.
Muslimovic D., Post B., Speelman J.D., & Schmand B. (2007). Motor procedural learning in Parkinson’s disease. Brain, 130, 28872897. doi: 10.1093/brain/awm211
Mutha P.K., Sainburg R.L., & Haaland K.Y. (2010). Deficits in ideomotor apraxia reflect impaired visuomotor transformations. Neuropsychologia, 48, 38553867. doi: 10.1016/j.neuropsychologia.2010.09.018
Mutha P.K., Sainburg P.I., & Haaland K.Y. (2011). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 69726981. doi: 10.1523/JNEUROSCI.6432-10.2011
Mutha P.K., Stapp L.H., Sainburg R.L., & Haaland K.Y. (2014). Posterior parietal and prefrontal cortex contributions to action modification. Cortex, 57, 3850. doi: doi.org/10.1016/j.cortex.2014.03.005
Mutha P.K., Stapp L.H., Sainburg R.L., & Haaland K.Y. (2017). Motor adaptation deficits in ideomotor limb apraxia. Journal of the International Neuropsychological Society, 23, 139149. doi: 10.1017/S135561771600120X
Nissen M.J., & Bullemer P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 132.
Orban de Xivry J.J., Criscimagna-Hemminger S.E., & Shadmehr R. (2011). Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule. Cerebral Cortex, 21(7), 14751484. doi: 10.1093/cercor/bhq192
Osuriak F., Jarry C., & LeGall D. (2011). Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 49, 299312.
Pammi V.S.C., Miyapuram K.P., Ahmed S.K., Bapi R.S., & Doya K. (2012). Changing the structure of complex visuo-motor sequences selectively activates the fronto-parietal network. NeuroImage, 59, 11801189.
Perry A., Stiso J., Channge E.F., Lin J.J., Parvizi J., & Knight R.T. (2017). Mirroring in the human brain: Deciphering the spatial-temporal patterns of the human mirror neuron system. Cerebral Cortex, doi: 10.1093/cercor/bhx013
Picard N., & Strick P.L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11(6), 663672.
Poldrack R.A., Clark J., Pare-Blagoev E.J., Shohamy D., Creso Moyano J., Myers C., &Gluck M.A. (2001). Interactive memory systems in the human brain. Nature, 414, 546550.
Rathelot J.A., & Strick P.L. (2006). Muscle representation in the macaque motor cortex: An anatomical perspective. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 82578262.
Rathelot J.A., & Strick P.L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 918923.
Rizzolatti G., & Fogassi L. (2014). The mirror mechanism: Recent findings and perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130420. http://dx.doi.org/10.1098/rstb.2013.0420
Rowe J.B., & Siebner H.R. (2012). The motor system and its disorders. NeuroImage, 61, 464477.
Schendan H.E., Searl M.M., Melrose R.J., & Stern C.E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 10131025. doi: 10.1016/S0896-6273(03)00123-5
Schluter N.D., Rushworth M.F.S., Passingham R.E., & Mills K.R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: A study using transcranial magnetic stimulation. Brain, 121, 785799.
Serrien D.J., Ivry R.B., & Swinnen S.P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7, 160167.
Serrien D.J., & Sovijarvi-Spape M.M. (2016). Manual dexterity: Functional lateralization patterns and motor efficience. Brain and Cognition, 108, 4246. doi: 10.1016/j.bandc.2016.07.005
Shackman A.J., Salomons T.V., Slagter H.A., Fox A.S., Winter J.J., & Davidson R.J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews. Neuroscience, 12(3), 154167.
Shohamy D., Myers C.E., Onlaor S., & Gluck M.A. (2004). Role of the basal ganglia in category learning: How do patients with Parkinson’s disease learn? Behavioral Neuroscience, 118(4), 676686. doi: 10.1037/0735-7044.118.4.676
Siegert R.J., Taylor K.D., Weatherall M., & Abernethy D.A. (2006). Is Implicit Sequence Learning Impaired in Parkinson’s Disease? A meta-analysis. Neuropsychology, 20(4), 490495. DOI: 10.1037/0894-4105.20.4.490
Sirigu A., Duhamel J.-R., Cohen L., Pillon B., Duboisand B., & Agid Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273(5281), 15641568.
Smith J.G., & McDowall J. (2006). When artificial grammar acquisition in Parkinson’s disease is impaired: The case of learning via trial-by-trial feedback. Brain Research, 1067(1), 216228. doi: 10.1016/j.brainres.2005.10.025
Smith J., Siegert R.J., McDowall J., & Abernethy D. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease. Brain and Cognition, 45, 378391. doi: 10.1006/brcg.2001.1286
Smith M.A., & Shadmehr R. (2005). Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. Journal of Neurophysiology, 93(5), 28092821.
Strick P.L., Dum R., & Fiez J.A. (2009). Cerebellum and non-motor function. In S.E. Hyman, T.M. Jessel, C.J. Shatz & C.F. Stevens (Eds.), Annual review of neuroscience, (Vol. 32., pp. 413434). Palo Alto, CA: Annual Reviews.
Taylor J.A., Krakauer J.W., & Ivry R.B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. Journal of Neuroscience, 34(8), 30233032. doi: 10.1523/JNEUROSCI.3619-13
Tseng Y.W., Diedrichsen J., Krakauer J.W., Shadmehr R., & Bastian A.J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98(1), 5462.
Verstynen T., & Sabes P.N. (2011). How each movement changes the next: An experimental and theoretical study of fast adaptive priors in reaching. Journal of Neuroscience, 31(27), 1005010059. doi: 10.1523/JNEUROSCI.6525-10
Vingerhoets G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 117. doi: 10.3389/fpsyg.2014.00151
Wilkinson L., Khan Z., & Jahanshahi M. (2009). The role of the basal ganglia and its cortical connections in sequence learning: Evidence from implicit and explicit sequence learning in Parkinson’s disease. Neuropsychologia, 47(12), 25642573. doi: 10.1016/j.neuropsychologia.2009.05.003
Willingham D.B., & Koroshetz W.J. (1993). Evidence for dissociable motor skills Huntington’s disease patients. Psychobiology, 21(3), 173182.
Willingham D.B., Salidis J., & Gabrieli J.D. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Learning and Memory, 1, 217229.
Wolpert D.M., Goodbody S.J., & Husain M. (1998). Maintaining internal representations: The role of the human superior parietal lobe. Nature Neuroscience, 1(6), 529533.
Wu T., Wang L., Hallett M., Chen Y., Li K., & Chan P. (2011). Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. NeuroImage, 55, 204215.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 14
Total number of PDF views: 289 *
Loading metrics...

Abstract views

Total abstract views: 354 *
Loading metrics...

* Views captured on Cambridge Core between 4th December 2017 - 20th January 2018. This data will be updated every 24 hours.