Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-vmftn Total loading time: 0.363 Render date: 2023-01-30T01:09:33.573Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Reproduction and dispersal at vents and cold seeps

Published online by Cambridge University Press:  04 April 2001

P.A. Tyler
Affiliation:
School of Ocean and Earth Science, University of Southampton, SOC, Southampton, SO14 3ZH
C.M. Young
Affiliation:
Division of Marine Science, Harbor Branch Oceanographic Institution, 5600 US 1 N, Fort Pierce, FL 34946, USA

Abstract

Reproductive cycles are determined from samples taken at regular intervals over a period of time related to the assumed periodicity of the breeding cycle. Fiscal, ship time and sampling constraints have made this almost impossible at deep-sea vents and seeps, but there is an accumulating mass of data that cast light on these processes. It is becoming apparent that most reproductive processes are phylogenetically conservative, even in extreme vent and seep habitats. Reproductive patterns of species occurring at vents and seeps are not dissimilar to those of species from the same phyla found in non-chemosynthetic environments. The demographic structure of most vent and seep animals is undescribed and the maximum ages and growth rates are not known. We know little about how the gametogenic cycle is initiated, though there is a growing body of data on the size at first reproduction. Gametogenic biology has been described from seasonal samples for only one organism from vent/seep environments. For other species, the pattern of gametogenesis has been described from serendipitous samples that allow determination of reproductive effort, but such samples reveal little about energy partitioning during the gametogenic process. Some notable adaptations have been described in mature gametes, including modified sperm. Spawning has been observed for a number of species both in situ and in vitro. Knowledge of the larvae of vent/seep organisms has been derived from laboratory fertilizations, from field collections over vent and seep areas and, for molluscs, from protoconch or prodissoconch size and shape. Larval dispersal has been perhaps the most intractable aspect of reproduction. Because the length of larval life is known for only a single seep organism and no vent organism, we cannot infer dispersal distance from a knowledge of current velocities. Modelling has been used to assess the maximum larval distance that allows effective migration between vent sectors. An indirect approach has been to estimate gene flow within, and between, vent sites using DNA sequencing and electrophoretic techniques. Although data are still equivocal, there are indications of considerable mixing among populations within and between vent sectors of the same ridge. Our knowledge of reproductive biology in vent and seep organisms remains fragmentary, but with molecular and biochemical techniques, emerging larval culture techniques, and increased sampling effort, the pieces of the jigsaw will eventually form an overall picture.

Type
Review Article
Copyright
© 1999 Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
142
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reproduction and dispersal at vents and cold seeps
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Reproduction and dispersal at vents and cold seeps
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Reproduction and dispersal at vents and cold seeps
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *