Skip to main content
×
Home
    • Aa
    • Aa

The Redfield Ratio and Phytoplankton Growth Rate

  • P. Tett (a1), M. R. Droop (a1) and S. I. Heaney (a2)
Abstract

Goldman, McCarthy & Peavey (1979b) argued that growth rates of phyto-plankton in apparently oligotrophic ocean waters may near maximal. Their hypothesis was succinctly restated by Goldman (1980): ‘…the chemical composition of phytoplankton is extremely variable under exacting laboratory conditions of nutrient limitation and approaches the ‘Redfield’ proportions (C:N:P of 106:16:1) when neither nitrogen nor phosphorus is limiting so that near maximal growth rates are attained. In marine surface waters the chemical composition of particular matter often is in the Redfield proportions, thus implying that natural phytoplankton growth rates may be close to maximal.’ We argue on theoretical, experimental and observational grounds that this implication may not necessarily be correct.

Copyright
References
Hide All
Antia N. J., Mcallister C. D. Parsons T. R., Stephens K. & Strickland J. D. H., 1963. Further measurements of primary production using a large-volume plastic sphere. Limnology and Oceanography, 8, 166183.
Banse K., 1974. On the interpretation of data for the carbon-to-nitrogen ratio of phytoplankton. Limnology and Oceanography, 19, 695699.
Banse K., 1977. Determining the carbon: chlorophyll ratio of natural phytoplankton. Marine Biology, 41, 199213.
Caperon J., 1968. Population growth response of Isochrysis galbana to nitrate variation at limiting concentration. Ecology, 49, 866872.
Caperon J. & Meyer J., 1972. Nitrogen-limited growth of marine phytoplankton. I. Changes in population characteristics with steady-state growth rate. Deep-Sea Research, 19, 601618.
Corner E. D. S. & Davies A. G., 1971. Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Advances in Marine Biology, 9, 101204.
Downes M. T., 1978. An improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater. Water Research, 12, 673675.
Droop M. R., 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association of the United Kingdom, 48, 689733.
Droop M. R., 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology, 9, 264272.
Droop M. R., 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825855.
Droop M. R., 1975. The nutrient status of algal cells in batch culture. Journal of the Marine Biological Association of the United Kingdom, 55, 541—555.
Droop M. R., 1977. An approach to quantitative nutrition of phytoplankton. Journal of Protozoology, 24, 528532.
Droop M. R., 1979. On the definition of x and of Q in the Cell Quota model. Journal of Experimental Marine Biology and Ecology, 39, 203.
Droop M. R., 1983. 25 years of algal growth kinetics. Botanica marina, 26, 99112.
Droop M. R., Mickelson M. J., Scott J. M. & Turner M. F., 1982. Light and nutrient status of algal cells. Journal of the Marine Biological Association of the United Kingdom, 62, 403434.
Dugdale R. C., 1967. Nutrient limitation in the sea: dynamics, identification and significance. Limnology and Oceanography, 12, 685—695.
Eppley R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin. National Oceanic and Atmospheric Administration of the United States, 70, 10631085.
Eppley R. W., Renger E. H., Venrick E. K. & Mullin M. M., 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean. Limnology and Oceanography, 18, 534551.
Eppley R. W. & Strickland J. D. H., 1968. Kinetics of phytoplankton growth. Advances in Microbiology of the Sea, 1, 2362.
Fleming R. H., 1940. Composition of plankton and units for reporting populations and production. Proceedings of the 6th Pacific Science Congress, 3, 535540.
Foy R. H., 1980. The influence of surface to volume ratio on the growth rates of planktonic blue-green algae. British Phycological Journal, 15, 279289.
Goldman J. C, 1980. Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology. In Primary Productivity in the Sea (ed. Falkowski P. G.), pp. 179194. New York: Plenum Press.
Goldman J. C., Mccarthy J. J. & Peavey D. G., 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, London, 279, 210215.
Goldman J. C. & Peavey D. G., 1979. Steady-state growth and chemical composition of the marine chlorophyte Dunaliella tertiolecta in nitrogen-limited continuous cultures. Applied and Environmental Microbiology, 38, 894901.
Gorham P. R., Mclachlan J., Hammer U. T. & Kim W. K., 1964. Isolation and culture of toxic strains of Anabaenaflos-aquae (Lyngb.) de Breb. Verhandlungen der Internationalen Vereinigung fur theoretische und angewandte Limnologie, 15, 796804.
Gowen R. J., 1981. The Primary Stages of Chlorophyll-a Breakdown in Sea-loch Phytoplankton and Cultured Algae. Ph.D. Thesis, University of Strathclyde.
Gowen R. J., Tett P. & Wood B. J. B., 1983. Changes in the major dihydroporphyrin plankton pigments during the spring bloom of phytoplankton in two Scottish sea-lochs. Journal of the Marine Biological Association of the United Kingdom, 63, 2736.
Gupta R. Sen, Sankaranayaranan V. N., De Sousa S. N. & Fondekar S. P., 1976. Chemical oceanography of the Arabian Sea. Part III. Studies on nutrient fraction and stochiometric relationships in the northern and eastern basins. Indian Journal of Marine Sciences 5, 5871.
Haug A., Myklestad S. & Sakshaug E., 1973. Studies on the phytoplankton ecology of the Trondheimsfjord. I. The chemical composition of phytoplankton populations. Journal of Experimental Marine Biology and Ecology, 11, 1526.
Healey F. P., 1975. Physiological indicators of nutrient deficiency in algae. Technical Report. Fisheries Research Board of Canada, no. 585, 30 pp.
Hilton J. & Rigg E., 1983. Determination of nitrate in lake water by the adaption of the hydrazine-copper reduction method for use on a discrete analyser: performance statistics and an instrument-induced difference from segmented flow conditions. Analyst, 108, 10261028.
Jerlov N. G., 1968. Optical Oceanography. 194 pp. New York: Elsevier.
Jones K. J., Tett P., Wallis A. C. & Wood B. J. B., 1978 a. The use of small, continuous and multispecies cultures to investigate the ecology of phytoplankton in a Scottish sea-loch. Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 21, 398412.
Jones K. J., Tett P., Wallis A. C. & Woood B. J. B., 1978 b, Investigation of a nutrient-growth model using a continuous culture of natural phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 58, 923941.
Ketchum B. H., 1939. The absorption of phosphate and nitrate by illuminated cultures of Nitzschia dosterium. American Journal of Botany, 26, 399407.
Ketchum B. H., 1947. The biochemical relations between marine organisms and their environment. Ecological Monographs, 17, 309315.
Lowry O. H., Rosebrough N. J., Farr A. L. & Randall R. J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265275.
Lund J. W. G., 1949. Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. Journal of Ecology, 37, 389419.
Lund J. W. G., 1964. Primary production and periodicity of phytoplankton. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 15, 3756.
Lund J. W. G., Kipling C. & Le Cren E. D., 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11, 143170.
Mcallister C. D., Parsons T. R., Stephens K. & Strickland J. D. H., 1961. Measurements of primary production in coastal sea water using a large volume plastic sphere. Limnology and Oceanography, 6, 237258.
Mcallister C. D., Parsons T. R. & Strickland J. D. H., 1960. Primary production at station ‘P’ in the northeast Pacific Ocean. Journal du Conseil, 25, 240259.
Mackereth F. J. H., 1953. Phosphorus utilization by Aterionella formosa Hass. Journal of Experimental Botany, 4, 296313.
Mackareth F. J. H., 1964. An improved galvanic cell for determination of oxygen concentrations in fluids. Journal of Scientific Instruments, 41, 3841.
Mackareth F. J. H., Heron J. & Talling J. F., 1978. Water analysis: some revised methods for limnologists. Scientific Publications. Freshwater Biological Association, no. 36, 120 pp.
Maske H., 1982. Ammonium-limited continuous cultures of Skeletonema costatum in steady and transitional state: experimental results and model simulations. Journal of the Marine Biological Association of the United Kingdom, 62, 919943.
Monod J. 1942. Recherche sur la Croissance des Cultures Bacteriennes. 211 pp. Paris: Herman etCie.
Olson S. C. W., 1950. Quantitative estimates of filiamentous algae. Transactions of the American Microscopical Society, 59, 272279.
Panikov N., 1979. Steady-state growth kinetics of Chlorella vulgaris under double substrate (urea and phosphate) limitation. Journal of Chemical Technology, 29, 442—450.
Parsons T. R. & Lebrasseur R. J., 1970. The availability of food to different trophic levels in the marine food chain. In Marine Food Chains (ed. Steele J. H.), pp. 325343. Edinburgh: Oliver & Boyd.
Parsons T. R., Stevens K. & Strickland J. D. H., 1961. On the chemical composition of eleven species of marine phytoplankters. Journal of the Fisheries Research Board of Canada, 18, 10011016.
Perry M. J., 1976. Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific. Limnology and Oceanography, 21, 88107.
Redfield A. C, 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume, pp. 176192. Liverpool University Press.
Redfield A. C, 1958. The biological control of chemical factors in the environment. American Scientist, 46, 205221.
Rhee G.-Y., 1974. Phosphate uptake under nitrogen limitation by Scenedesmus and its ecological implications. Journal of Phycology, 10, 470475.
Sakshaug E., Andresen K., Myklestad S. & Olsen O., 1983. Nutrient status of phytoplankton communities in Norwegian water (marine, brackish and fresh) as revealed by their chemical composition. Journal of Plankton Research, 5, 175—196.
Scott J. M., 1980. Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. Journal of the Marine Biological Association of the United Kingdom, 60, 681702.
Scott J. M. & Marlow J. A., 1982. A microcalorimeter with a range of 01–10 calories. Limnology and Oceanography, 27, 585590.
Serruya C. & Berman T., 1975. Phosphorus, nitrogen and the growth of algae in Lake Kinneret. Journal of Phycology, 11, 155162.
Steele J. H.J 1962. Environmental control of photosynthesis in the sea. Limnology and Oceanography, 7, 137150.
Steele J. H. & Baird I. E., 1962. Further relations between primary production, chlorophyll and paniculate carbon. Limnology and Oceanography, 7, 4247.
Strickland J. D. H., 1960. Measuring the production of marine phytoplankton. Bulletin. Fisheries Research Board of Canada, no. 122, 172 pp.
Strickland J. D. H., Holm-Hansen O., Eppley R. W. & Linn R. J., 1969. The use of a deep tank in a plankton ecology. I. Studies on the growth and composition of phytoplankton crops in low nutrient levels. Limnology and Oceanography, 14, 2334.
Strickland J. D. H. & Parsons T. R., 1972. A practical handbook of seawater analysis, 2nd ed. Bulletin. Fisheries Research Board of Canada, no. 167, 310 pp.
Sverdrup H. U., 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil, 18, 287295.
Talling J. F., 1974. Photosynthetic pigments. General outline of spectrophotometric methods; specific procedures. In A Manual on Methods for Measuring Primary Productivity in Aquatic Environments, 2nd ed. (ed. Vollenweider R. A.), pp. 22—26. Oxford: Blackwell Scientific Publications.
Tett P. B., 1973. The use of log-normal statistics to describe phytoplankton populations from the Firth of Lome area. Journal of Experimental Marine Biology and Ecology, 11, 121136.
Tett P., 1981. Modelling phytoplankton production at shelf-sea fronts. Philosophical Transactions of the Royal Society (A), 302, 605–615.
Tett P., Cottrell J. C, Trew D. O. & Wood B. J. B., 1975. Phosphorus quota and the chlorophyll: carbon ratio in marine phytoplankton. Limnology and Oceanography, 20, 587603.
Tett P., Drysdale M. & Shaw J., 1981. Phytoplankton in Loch Creran during 1979 and its effect on the rearing of oyster larvae. Internal Report. Scottish Marine Biological Association, no. 52, 77 pp.
Tett P. & Wallis A. C, 1978. The general annual cycle of chlorophyll standing crop in Loch Creran. Journal of Ecology, 66, 227—239.
Tyler I. D., 1983. A Carbon Budget for Creran, a Scottish Sea Loch. Ph.D. Thesis, University of Strathclyde.
Wynne D., Patni N. J., Aaronson S. & Berman T., 1982. The relationship between nutrient status and chemical composition of Peridinium cinctum during the bloom in Lake Kinneret. Journal of Plankton Research, 4, 125136.
Zevenboom W., De Vaate A. B. & Mur L. R., 1982. Assessment of factors limiting growth rate of Oscillatoria agardhii in hypereutrophic Lake Wolderwijd, 1978, by the use of physiological indicators. Limnology and Oceanography, 27, 3952.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Marine Biological Association of the United Kingdom
  • ISSN: 0025-3154
  • EISSN: 1469-7769
  • URL: /core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 145 *
Loading metrics...

Abstract views

Total abstract views: 812 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.