Skip to main content Accessibility help

The same but different: stable isotopes reveal two distinguishable, yet similar, neighbouring food chains in a coral reef

  • Baptiste Le Bourg (a1) (a2), Yves Letourneur (a3), Daniela Bănaru (a1), Jean Blanchot (a1), Cristèle Chevalier (a1), Gérard Mou-Tham (a4), Benoit Lebreton (a5) and Marc Pagano (a1)...


Stable isotope compositions were studied in particulate organic matter (POM), zooplankton and different trophic groups of teleosts to compare food chains based on plankton at two sites (lagoon and outer slope) in a New Caledonian coral reef. For each trophic compartment, δ13C values were always lower in the outer slope than in the lagoon. This result may be explained by potential differences in POM composition between the two environments, suggesting that the two food chains are based on different primary sources of carbon. In contrast, δ15N values did not vary between the lagoon and the outer slope, indicating that these two food chains presented similar length and trophic levels, despite being distinguishable.


Corresponding author

Correspondence should be addressed to: B. Le Bourg, Université de Liège, Laboratory of Oceanology, MARE Centre, 4000 Liège, Belgium email:


Hide All
Barnett, A., Bellwood, D.R. and Hoey, A.S. (2006) Trophic ecomorphology of cardinalfish. Marine Ecology Progress Series 322, 249257.
Briand, M.J., Bonnet, X., Goiran, C., Guillou, G. and Letourneur, Y. (2015) Major sources of organic matter in a complex coral reef lagoon: identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555.
Briand, M.J., Bonnet, X., Guillou, G. and Letourneur, Y. (2016) Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 1222.
Bunn, S.E., Loneragan, N.R. and Kempster, M.A. (1995) Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implications for food-web studies using multiple stable isotopes. Limnology and Oceanography 40, 622625.
Carassou, L., Kulbicki, M., Nicola, T.J.R. and Polunin, N.V.C. (2008) Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquatic Living Resources 21, 112.
Carleton, J.H. and Doherty, P.J. (1998) Tropical zooplankton in the highly-enclosed lagoon of Taiaro Atoll (Tuamotu Archipelago, French Polynesia). Coral Reefs 17, 2935.
Ceccarelli, D.M. (2007) Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853866.
Champalbert, G. (1993) Plankton inhabiting the surface layer of the southern and southwestern lagoon of New Caledonia. Marine Biology 115, 223228.
Chevalier, C., Devenon, J.L. and Rey, V. (2012) Impact of cross-reef fluxes on the Ouano lagoon circulation. In Yellowlees, D. and Hughes, T.P. (eds) Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012. Townsville, Queensland: James Cook University, ICRS2012_4A_1.
Chevalier, C., Sous, D., Devenon, J.L., Pagano, M., Rougier, G. and Blanchot, J. (2015) Impact of cross-reef water fluxes on lagoon dynamics: a simple parameterization for coral lagoon circulation model, with application to the Ouano Lagoon, New Caledonia. Ocean Dynamics 65, 15091534.
Chisholm, L.A. and Roff, J.C. (1990) Size-weight relationships and biomass of tropical off Kingston, Jamaica. Marine Biology 106, 7177.
Cortés, E. (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.
Crossman, D.J., Choat, J.H., Clements, K.D., Hardy, T. and McConochie, J. (2001) Detritus as food for grazing fishes on coral reefs. Limnology and Oceanography 46, 15961605.
Cuet, P., Atkinson, M.J., Blanchot, J., Casareto, B.E., Cordier, E., Falter, J., Frouin, P., Fujimura, H., Pierret, C., Susuki, Y. and Tourrand, C. (2011) CNP budgets of a coral-dominated fringing reef at La Réunion, France: coupling of oceanic phosphate and groundwater nitrate. Coral Reefs 30, 4555.
Davenport, S.R. and Bax, N.J. (2002) A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Canadian Journal of Fisheries and Aquatic Sciences 59, 514530.
de Brye, B., de Brauwere, A., Gourgue, O., Delhez, E.J. and Deleersnijder, E. (2013) Reprint of water renewal timescales in the Scheldt Estuary. Journal of Marine Systems 128, 316.
Delesalle, B. and Sournia, A. (1992) Residence time of water and phytoplankton biomass in coral reef lagoons. Continental Shelf Research 12, 939949.
DeNiro, M.J. and Epstein, S. (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica and Cosmochimica Acta 42, 495506.
DeNiro, M.J. and Epstein, S. (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica and Cosmochimica Acta 45, 341351.
Dromard, R.C., Bouchon-Navaro, Y., Cordonnier, S., Fontaine, M.F., Verlaque, M., Harmelin-Vivien, M. and Bouchon, C. (2013) Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): inference from stomach content and stable isotope analysis. Journal of Experimental Marine Biology and Ecology 440, 116125.
Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. and Parmentier, E. (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyological Research 56, 1017.
Friedlander, A.M. and DeMartini, E.E. (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Marine Ecology Progress Series 230, 253264.
Gottfried, M. and Roman, M.R. (1983) Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Marine Biology 72, 211218.
Hamner, W.M., Colin, P.L. and Hamner, P.P. (2007) Export-import dynamics of zooplankton on a coral reef in Palau. Marine Ecology Progress Series 334, 8392.
Hamner, W.M., Jones, M.S., Carleton, J.H., Hauri, I.R. and Williams, D. McB. (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bulletin of Marine Science 42, 459479.
Harmelin-Vivien, M., Loizeau, V., Mellon, C., Beker, B., Arlhac, D., Bodiguel, X., Ferraton, F., Hermand, R., Pillippon, X. and Salen-Picard, C. (2008) Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Continental Shelf Research 28, 19111919.
Hobson, E.S. (1974) Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fishery Bulletin 72, 9151031.
Hobson, K.A. (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314326.
Houlbrèque, F., Delesalle, B., Blanchot, J., Montel, Y. and Ferrier-Pagès, C. (2006) Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquatic Microbial Ecology 44, 5970.
Howe, J.C. (1993) A comparative analysis of the feeding apparatus in pomacanthids, with special emphasis of oesophageal papillae in Genicanthus personatus. Journal of Fish Biology 43, 593602.
Jacquet, S., Delesalle, B., Torréton, J.P. and Blanchot, J. (2006) Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Marine Ecology Progress Series 320, 6578.
Jaschinski, S., Hansen, T. and Sommer, U. (2008) Effects of acidification in multiple stable isotope analyses. Limnology and Oceanography: Methods 6, 1215.
Kennedy, P., Kennedy, H. and Papadimitriou, S. (2005) The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Communications in Mass Spectrometry 19, 10631068.
Kolasinski, J., Rogers, K. and Frouin, P. (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Communications in Mass Spectrometry 22, 29552960.
Lecchini, D., Adjeroud, M., Pratchett, M.S., Cadoret, L. and Galzin, R. (2003) Spatial structure of coral reef fish communities in the Ryukyu Islands, southern Japan. Oceanologica Acta 26, 537547.
Leichter, J.L., Alldredge, A.L., Bernardi, G., Brooks, A.J., Carlson, C.A., Carpenter, R.C., Edmunds, P.J., Fewings, M.R., Hanson, K.M., Hench, J.L., Holbrook, S.L., Nelson, C.E., Schmitt, R.J., Toonen, R.J., Washburn, L. and Wyatt, A.S.J. (2013) Biological and physical interactions on a tropical island coral reef: transport and retention processes on Moorea, French Polynesia. Oceanography 26, 5263.
Letourneur, Y., Lison de Loma, T., Richard, P., Harmelin-Vivien, M.L., Cresson, P., Banaru, D., Fontaine, M.F., Gref, T. and Planes, S. (2013) Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 10911102.
McMahon, K.W., Thorrold, S.R., Houghton, L.A. and Berumen, M.L. (2016) Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809821.
Michener, R.H. and Kaufman, L. (2007) Stable isotope ratios as tracers in marine food webs: an update. In Michener, R. and Lajtha, K. (eds) Stable isotopes in ecology and environmental science. Malden, MA: Blackwell Publishing, pp. 238282.
Moberg, F. and Folk, C. (1999) Ecological goods and services of coral reef ecosystems. Ecological Economics 29, 215233.
Nash, K.L., Welsh, J.Q., Graham, N.A.J. and Bellwood, D.R. (2015) Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications. Oecologia 177, 7383.
Pinkas, L.M., Oliphant, S. and Iverson, I.L.K. (1971) Food habits of albacore, bluefin tuna and bonito in Californian waters. Fish Bulletin California Department of Fish and Game 152, 1105.
Pitt, K.A., Clement, A.L., Connolly, R.M. and Thibault-Botha, D. (2008) Predation by jellyfish on large and emergent zooplankton: implications for benthic-pelagic coupling. Estuarine Coastal and Shelf Science 76, 827833.
Post, D.M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703718.
Post, D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Quatrochi, J. and Montana, C.G. (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179189.
Randall, J.E. (1975) A revision of the Indo-Pacific angelfish genus Genicanthus, with description of three new species. Bulletin of Marine Science 25, 393421.
R Core Team (2013) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0,
Roman, M.R., Furnas, M.J. and Mullin, M.M. (1990) Zooplankton abundance and grazing at Davies Reef, Great Barrier Reef, Australia. Marine Biology 105, 7382.
Sale, P.F. (1978) Coexistence of coral reef fishes – a lottery for living space. Environmental Biology of Fishes 3, 85102.
Satapoomin, S. (1999) Carbon content of some common tropical Andaman Sea copepods. Journal of Plankton Research 21, 21172123.
Schoeninger, M.J. and DeNiro, M.J. (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica and Cosmochimica Acta 48, 625639.
Skinner, M.M., Martin, A.A. and Moore, B.C. (2016) Is lipid correction necessary in the stable isotope analysis of fish tissues? Rapid Communications in Mass Spectrometry 30, 881889.
Smith, J.E., Hunter, C.L. and Smith, C.M. (2010) The effects of top-down vs bottom-up control on benthic coral reef community structure. Oecologia 163, 497507.
Uye, S. (1982) Length-weight relationships in important zooplankton from the Inland Sea of Japan. Journal of the Oceanographical Society of Japan 38, 149158.
Veit-Köhler, G., Guilini, K., Peeken, I., Quillfeldt, P. and Mayr, C. (2013) Carbon and nitrogen stable isotope signatures of deep-sea meiofauna follow oceanographical gradients across the Southern Ocean. Progress in Oceanography 110, 6979.
Wyatt, A.S.J., Lowe, R.J., Humphries, S. and Waite, A.M. (2013) Particulate nutrient fluxes over a fringing coral reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes. Limnology and Oceanography 58, 409427.
Wyatt, A.S.J., Waite, A.M. and Humphries, S. (2010) Variability in isotope discrimination factors in coral reef fishes: implications for diet and food web reconstruction. PLoS ONE 5, e13682.
Wyatt, A.S.J., Waite, A.M. and Humphries, S. (2012) Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 10291044.


Type Description Title
Supplementary materials

Le Bourg supplementary material
Le Bourg supplementary material 1

 PDF (167 KB)
167 KB

The same but different: stable isotopes reveal two distinguishable, yet similar, neighbouring food chains in a coral reef

  • Baptiste Le Bourg (a1) (a2), Yves Letourneur (a3), Daniela Bănaru (a1), Jean Blanchot (a1), Cristèle Chevalier (a1), Gérard Mou-Tham (a4), Benoit Lebreton (a5) and Marc Pagano (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed