Skip to main content Accessibility help
×
Home

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels

Published online by Cambridge University Press:  11 August 2017


Ioannis Azoidis
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
Joel Metcalfe
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
James Reynolds
Affiliation:
Lein Applied Diagnostics Ltd, Reading Enterprise Centre, Whiteknights Road, Reading RG6 6BU, UK
Shirley Keeton
Affiliation:
Cell Migration Lab, School of Biological Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
Sema S. Hakki
Affiliation:
Selcuk University Faculty of Dentistry Department of Periodontology Campus, 42079 Konya, Turkey
Jonathan Sheard
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK Sheard BioTech Limited, Suite LP36133, 20-22, Wenlock Road, London N17GU, UK
Darius Widera
Affiliation:
Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK
Corresponding
E-mail address:

Abstract

Human mesenchymal stem cells (MSCs) are the most intensely studied and clinically used adult stem cell type. Conventional long-term cultivation of MSCs as a monolayer is known to result in a reduction of their functionality and viability. In addition, large volumes of cell culture medium are required to obtain cell quantities needed for their clinical use. In this proof of concept study, we cultivated human MSCs within a three-dimensional nanofibrillar cellulose (NFC) hydrogel. We show that NFC is biocompatible with human MSCs, and represents a feasible approach to upscaling of their culture.


Type
Biomaterials for 3D Cell Biology Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Sharma, R.R., Pollock, K., Hubel, A., and McKenna, D.: Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54, 1418 (2014).CrossRefGoogle ScholarPubMed
2.Gnecchi, M., He, H., Noiseux, N., Liang, O.D., Zhang, L., Morello, F., Mu, H., Melo, L.G., Pratt, R.E., Ingwall, J.S., and Dzau, V.J.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661 (2006).CrossRefGoogle ScholarPubMed
3.Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., Salto-Tellez, M., Timmers, L., Lee, C.N., El Oakley, R.M., Pasterkamp, G., de Kleijn, D.P., and Lim, S.K.: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214 (2010).CrossRefGoogle ScholarPubMed
4.Kordelas, L., Rebmann, V., Ludwig, A.K., Radtke, S., Ruesing, J., Doeppner, T.R., Epple, M., Horn, P.A., Beelen, D.W., and Giebel, B.: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970 (2014).CrossRefGoogle ScholarPubMed
5.Ben-David, U., Mayshar, Y., and Benvenisty, N.: Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9, 97 (2011).CrossRefGoogle ScholarPubMed
6.Bara, J.J., Richards, R.G., Alini, M., and Stoddart, M.J.: Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32, 1713 (2014).CrossRefGoogle ScholarPubMed
7.Turinetto, V., Vitale, E., and Giachino, C.: Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci. 17, 1164 (2016).CrossRefGoogle ScholarPubMed
8.Ho, S.S., Murphy, K.C., Binder, B.Y., Vissers, C.B., and Leach, J.K.: Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl. Med. 5, 773 (2016).CrossRefGoogle ScholarPubMed
9.Lund, A.W., Stegemann, J.P., and Plopper, G.E.: Mesenchymal stem cells sense three dimensional type I collagen through discoidin domain receptor 1. Open Stem Cell J. 1, 40 (2009).Google ScholarPubMed
10.Gardner, O.F., Musumeci, G., Neumann, A.J., Eglin, D., Archer, C.W., Alini, M., and Stoddart, M.J.: Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J. Tissue Eng. Regen. Med. (2016). doi: 10.1002/term.Google ScholarPubMed
11.Favi, P.M., Benson, R.S., Neilsen, N.R., Hammonds, R.L., Bates, C.C., Stephens, C.P., and Dhar, M.S.: Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1935 (2013).CrossRefGoogle ScholarPubMed
12.Cochis, A., Grad, S., Stoddart, M.J., Fare, S., Altomare, L., Azzimonti, B., Alini, M., and Rimondini, L.: Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci. Rep. 7, 45018 (2017).CrossRefGoogle ScholarPubMed
13.Yamaguchi, Y., Ohno, J., Sato, A., Kido, H., and Fukushima, T.: Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 14, 105 (2014).CrossRefGoogle ScholarPubMed
14.Serban, M.A., Liu, Y., and Prestwich, G.D.: Effects of extracellular matrix analogues on primary human fibroblast behavior. Acta Biomater. 4, 67 (2008).CrossRefGoogle ScholarPubMed
15.Lou, Y.R., Kanninen, L., Kuisma, T., Niklander, J., Noon, L.A., Burks, D., Urtti, A., and Yliperttula, M.: The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 23, 380 (2014).CrossRefGoogle ScholarPubMed
16.Bhattacharya, M., Malinen, M.M., Lauren, P., Lou, Y.R., Kuisma, S.W., Kanninen, L., Lille, M., Corlu, A., GuGuen-Guillouzo, C., Ikkala, O., Laukkanen, A., Urtti, A., and Yliperttula, M.: Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control Release 164, 291 (2012).CrossRefGoogle ScholarPubMed
17.Malinen, M.M., Kanninen, L.K., Corlu, A., Isoniemi, H.M., Lou, Y.R., Yliperttula, M.L., and Urtti, A.O.: Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35, 5110 (2014).CrossRefGoogle ScholarPubMed
18.Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315 (2006).CrossRefGoogle ScholarPubMed
19.Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676 (2012).CrossRefGoogle ScholarPubMed
20.Kaus, A., Widera, D., Kassmer, S., Peter, J., Zaenker, K., Kaltschmidt, C., and Kaltschmidt, B.: Neural stem cells adopt tumorigenic properties by constitutively activated NF-kappaB and subsequent VEGF up-regulation. Stem Cells Dev. 19, 999 (2010).CrossRefGoogle ScholarPubMed
21.Petersen, O.W., Rønnov-Jessen, L., Howlett, A.R., and Bissell, M.J.: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89, 9064 (1992).CrossRefGoogle ScholarPubMed
22.Yang, C.M., Huang, Y.J., and Hsu, S.H.: Enhanced autophagy of adipose-derived stem cells grown on chitosan substrates. Biores Open Access 4, 89 (2015).CrossRefGoogle ScholarPubMed
23.Kleinman, H.K. and Martin, G.R.: Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378 (2005).CrossRefGoogle ScholarPubMed
24.Paletta, J.R., Mack, F., Schenderlein, H., Theisen, C., Schmitt, J., Wendorff, J.H., Agarwal, S., Fuchs-Winkelmann, S., and Schofer, M.D.: Incorporation of osteoblasts (MG63) into 3D nanofibre matrices by simultaneous electrospinning and spraying in bone tissue engineering. Eur. Cell Mater. 21, 384 (2011).CrossRefGoogle ScholarPubMed
25.Paukkonen, H., Ukkonen, A., Szilvay, G., Yliperttula, M., and Laaksonen, T.: Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur. J. Pharm. Sci. 100, 238 (2017).CrossRefGoogle ScholarPubMed
26.Modulevsky, D.J., Cuerrier, C.M., and Pelling, A.E.: Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS ONE 11, e0157894 (2016).CrossRefGoogle ScholarPubMed
27.Lopes, V.R., Sanchez-Martinez, C., Stromme, M., and Ferraz, N.: In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol. 14, 1 (2017).CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 211
Total number of PDF views: 229 *
View data table for this chart

* Views captured on Cambridge Core between 11th August 2017 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-qrxfc Total loading time: 1.837 Render date: 2020-12-02T22:10:54.266Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 22:05:12 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *