Skip to main content
×
Home

Biomaterial-based strategies for the engineering of mechanically active soft tissues

  • Zhixiang Tong (a1) and Xinqiao Jia (a1)
Abstract
Abstract

Load-bearing, mechanically active tissues are routinely subjected to nonlinear mechanical deformations. Consequently, these tissues exhibit complex mechanical properties and unique tissue organizations. Successful engineering of mechanically active tissues relies on the integration of the mechanical sensing mechanism found in the native tissues into polymeric scaffolds. Intelligent biomaterials that closely mimic the structural organizations and multi-scale responsiveness of the natural extracellular matrices, when strategically combined with multipotent cells and dynamic culture devices that generate physiologically relevant physical forces, will lead to the creation of artificial tissues that are mechanically robust and biologically functional.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Biomaterial-based strategies for the engineering of mechanically active soft tissues
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Biomaterial-based strategies for the engineering of mechanically active soft tissues
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Biomaterial-based strategies for the engineering of mechanically active soft tissues
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Xinqiao Jia at xjia@udel.edu
References
Hide All
1.Ozerdem O.R., Wolfe S.A., and Marshall D.: Use of skin substitutes in pediatric patients. J. Craniofac. Surg. 14, 517 (2003).
2.Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., Dickinson S.C., Hollander A.P., Mantero S., Conconi M.T., and Birchall M.A.: Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023 (2008).
3.Gkioni K., Leeuwenburgh S.C.G., Douglas T.E.L., Mikos A.G., and Jansen J.A.: Mineralization of hydrogels for bone regeneration. Tissue Eng. Part B 16, 577 (2010).
4.Atala A., Bauer S.B., Soker S., Yoo J.J., and Retik A.B.: Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241 (2006).
5.Venugopal J.R., Prabhakaran M.P., Mukherjee S., Ravichandran R., Dan K., and Ramakrishna S.: Biomaterial strategies for alleviation of myocardial infarction. J. R. Soc. Interface 9, 1 (2012).
6.Kakisis J.D., Liapis C.D., Breuer C., and Sumpio B.E.: Artificial blood vessel: the holy grail of peripheral vascular surgery. J. Vasc. Surg. 41, 349 (2005).
7.Gray S.D.: Cellular physiology of the vocal folds. Otolaryngol. Clin. N. Am. 33, 679 (2000).
8.Langer R. and Tirrell D.A.: Designing materials for biology and medicine. Nature 428, 487 (2004).
9.Burdick J.A. and Mauck R.L., eds.: Biomaterials for Tissue Engineering: A Review of the Past and Future Trends (Springer, New York, NY, 2011).
10.Serrano M.C., Chung E.J., and Ameer G.A.: Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20, 192 (2010).
11.Lutolf M.P. and Hubbell J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47 (2005).
12.Crapo P.M., Gilbert T.W., and Badylak S.F.: An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233 (2011).
13.Amsden B.: Curable, biodegradable elastomers: Emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3, 1335 (2007).
14.Lal J. and Mark J.E.: Advances in Elastomers and Rubber Elasticity (Plenum Press, New York, 1986).
15.Grieshaber S.E., Jha A.K., Farran A.J.E., and Jia X.: Hydrogels in tissue engineering. In Biomaterials for Tissue Engineering: A Review of the Past and Future Trends; Burdick J.A. and Mauck R.L., eds.; Springer, New York, 2011; p. 9.
16.Kopecek J.: Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. Pol. Chem. 47, 5929 (2009).
17.Zhang C., Aung A., Liao L.Q., and Varghese S.: A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter 5, 3831 (2009).
18.Gong J.P.: Why are double network hydrogels so tough? Soft Matter 6, 2583 (2010).
19.Haraguchi K., Farnworth R., Ohbayashi A., and Takehisa T.: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(n,n-dimethylacrylamide) and clay. Macromolecules 36, 5732 (2003).
20.Alberts B., Johnson A., Lewis J., Raff M., Roberts K., and Walter P.: Molecular Biology of the Cell (Garland Science, New York, 2002).
21.Debelle L., and Tamburro A.M.: Elastin: molecular description and function. Int. J. Biochem. Cell Biol. 31, 261 (1999).
22.Almine J.F., Bax D.V., Mithieux S.M., Nivison-Smith L., Rnjak J., Waterhouse A., Wise S.G., and Weiss A.S.: Elastin-based materials. Chem. Soc. Rev. 39, 3371 (2010).
23.Bellingham C.M., Lillie M.A., Gosline J.M., Wright G.M., Starcher B.C., Bailey A.J., Woodhouse K.A., and Keeley F.W.. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70, 445 (2003).
24.Grieshaber S.E., Farran A.J.E., Lin-Gibson S., Kiick K.L., and Jia X.Q.: Synthesis and characterization of elastin-mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules 42, 2532 (2009).
25.Jia X.Q. and Kiick K.L.: Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140 (2009).
26.Grieshaber S.E., Farran A.J.E., Bai S., Kiick K.L., and Jia X.Q.: Tuning the properties of elastin mimetic hybrid copolymers via a modular polymerization method. Biomacromolecules (submitted 2012).
27.Elvin C.M., Carr A.G., Huson M.G., Maxwell J.M., Pearson R.D., Vuocolo T., Liyou N.E., Wong D.C.C., Merritt D.J., and Dixon N.E.: Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999 (2005).
28.Qin G.K., Rivkin A., Lapidot S., Hu X., Preis I., Arinus S.B., Dgany O., Shoseyov O., and Kaplan D.L.: Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231 (2011).
29.Li L.Q., Teller S., Clifton R.J., Jia X.Q., and Kiick K.L.: Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 12, 2302 (2011).
30.Langer R., and Vacanti J.P.: Tissue engineering. Science 260, 920 (1993).
31.Zheng P., and McCarthy T.J.: A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024 (2012).
32.Montarnal D., Capelot M., Tournilhac F., and Leibler L.: Silica-like malleable materials from permanent organic networks. Science 334, 965 (2011).
33.Kloxin C.J., Scott T.F., Adzima B.J., and Bowman C.N.: Covalent adaptable networks (cans): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643 (2010).
34.Ulijn R.V. and Smith A.M.: Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664 (2008).
35.Orbach R., Adler-Abramovich L., Zigerson S., Mironi-Harpaz I., Seliktar D., and Gazit E.: Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10, 2646 (2009).
36.Hartgerink J.D., Beniash E., and Stupp S.I.: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001).
37.Zhang S.G.: Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20, 321 (2002).
38.Schneider J.P., Pochan D.J., Ozbas B., Rajagopal K., Pakstis L., and Kretsinger J.: Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030 (2002).
39.Megeed Z., Cappello J., and Ghandehari H.: Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 54, 1075 (2002).
40.Shen W., Zhang K.C., Kornfield J.A., and Tirrell D.A.: Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5, 153 (2006).
41.Yan C.Q., Altunbas A., Yucel T., Nagarkar R.P., Schneider J.P., and Pochan D.J.: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6, 5143 (2010).
42.Hoffman B.D., Grashoff C., and Schwartz M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316 (2011).
43.Fratzl P.: Biomimetic materials research: What can we really learn from nature's structural materials? J. R. Soc. Interface 4, 637 (2007).
44.Fantner G.E., Hassenkam T., Kindt J.H., Weaver J.C., Birkedal H., Pechenik L., Cutroni J.A., Cidade G.A.G., Stucky G.D., Morse D.E., and Hansma P.K.: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612 (2005).
45.Becker N., Oroudjev E., Mutz S., Cleveland J.P., Hansma P.K., Hayashi C.Y., Makarov D.E., and Hansma H.G.: Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278 (2003).
46.Wisse E., Govaert L.E., Meijer H.E.H., and Meijer E.W.: Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers. Macromolecules 39, 7425 (2006).
47.Sijbesma R.P., Beijer F.H., Brunsveld L., Folmer B.J.B., Hirschberg J., Lange R.F.M., Lowe J.K.L., and Meijer E.W.: Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601 (1997).
48.Greef T.F.A., and Meijer E.W.: Materials science—supramolecular polymers. Nature 453, 171 (2008).
49.Kushner A.M., Gabuchian V., Johnson E.G., and Guan Z.B.: Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 129, 14110 (2007).
50.Kushner A.M., and Guan Z.B.: Modular design in natural and biomimetic soft materials. Angew. Chem.-Int. Ed. 50, 9026 (2011).
51.Cordier P., Tournilhac F., Soulie-Ziakovic C., and Leibler L.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977 (2008).
52.Dankers P.Y.W., Harmsen M.C., Brouwer L.A., Van Luyn M.J.A., and Meijer E.W.: A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568 (2005).
53.Lv S., Dudek D.M., Cao Y., Balamurali M.M., Gosline J., and Li H.B.: Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69 (2010).
54.Stevens M.M., and George J.H.: Exploring and engineering the cell surface interface. Science 310, 1135 (2005).
55.Torrent-Guasp F., Kocica M.J., Corno A.F., Komeda M., Carreras-Costa F., Flotats A., Cosin-Aguillar J., and Wen H.: Towards new understanding of the heart structure and function. Eur. J. Cardio-Thorac. Surg. 27, 191 (2005).
56.Holmes J.W., Borg T.K., and Covell J.W.: Annual Review of Biomedical Engineering. Annual Reviews (Annual Review: Palo Alto, CA, 2005), Vol. 7, p. 223.
57.Cohen N.P., Foster R.J., and Mow V.C.: Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203 (1998).
58.Hirano M.: Structure of the vocal fold in normal and diesease states: Anatomical and physical studies. ASHA Rep. 11, 11 (1981).
59.Jia X.Q., Yeo Y., Clifton R.J., Jiao T., Kohane D.S., Kobler J.B., Zeitels S.M., and Langer R.: Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 3336 (2006).
60.Jha A.K., Hule R.A., Jiao T., Teller S.S., Clifton R.J., Duncan R.L., Pochan D.J., and Jia X.Q.: Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 42, 537 (2009).
61.Jha A.K., Malik M.S., Farach-Carson M.C., Duncan R.L., and Jia X.Q.: Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 6, 5045 (2010).
62.Jha A.K., Yang W.D., Kirn-Safran C.B., Farach-Carson M.C., and Jia X.Q.: Perlecan domain i-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via bmp-2 release. Biomaterials 30, 6964 (2009).
63.Xu X., Jha A.K., Duncan R.L., and Jia X.Q.: Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater. 7, 3050 (2011).
64.Xu X., Jha A.K., Harrington D.A., Farach-Carson M.C., and Jia X.Q.: Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter 8, 3280 (2012).
65.Krishna O.D., Jha A.K., Jia X.Q., and Kiick K.L.: Integrin-mediated adhesion and proliferation of human mscs elicited by a hydroxyproline-lacking, collagen-like peptide. Biomaterials 32, 6412 (2011).
66.Jha A.K., Xu X.A., Duncan R.L., and Jia X.Q.: Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466 (2011).
67.Moutos F.T., Freed L.E., and Guilak F.: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6, 162 (2007).
68.Nerurkar N.L., Baker B.M., Sen S., Wible E.E., Elliott D.M., and Mauck R.L.: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8, 986 (2009).
69.Engelmayr G.C., Cheng M.Y., Bettinger C.J., Borenstein J.T., Langer R., and Freed L.E.: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003 (2008).
70.Farach-Carson M.C., Hecht J.T., and Carson D.D.: Heparan sulfate proteoglycans: key players in cartilage biology. Crit. Rev. Eukaryot. Gene Expr. 15, 29 (2005).
71.Farach-Carson M.C., and Carson D.D.: Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology 17, 897 (2007).
72.Casper C.L., Yang W.D., Farach-Carson M.C., and Rabolt J.F.: Coating electrospun collagen and gelatin fibers with perlecan domain i for increased growth factor binding. Biomacromolecules 8, 1116 (2007).
73.Tschumperlin D.J., Dai G.H., Maly I.V., Kikuchi T., Laiho L.H., McVittie A.K., Haley K.J., Lilly C.M., So P.T.C., Lauffenburger D.A., Kamm R.D., and Drazen J.M.: Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83 (2004).
74.Lee K.Y., Peters M.C., Anderson K.W., and Mooney D.J.: Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998 (2000).
75.Xiao L.X., Liu C., Zhu J.H., Pochan D.J., and Jia X.Q.: Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter 6, 5293 (2010).
76.Xiao L.X., Zhu J.H., Pochan D.J., Londono J.D., and Jia X.Q.: Mechanoresponsive hydrogels via the covalent integration of block copolymer micelles in macroscopic matrices. Soft Matter (manuscript in preparation 2011).
77.Hartnick C.J., Rehbar R., and Prasad V.: Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 115, 4 (2005).
78.Sato K., Hirano M., and Nakashima T.: Fine structure of the human newborn and infant vocal fold mucosae. Ann. Otol. Rhinol. Laryngol. 110, 417 (2001).
79.Sato K., Hirano M., and Nakashima T.: Age-related changes of collagenous fibers in the human vocal fold mucosa. Ann. Otol. Rhinol. Laryngol. 111, 1520 (2002).
80.Sato K., Nakashima T., Nonaka S., and Harabuchi Y.: Histopathologic investigations of the unphonated human vocal fold mucosa. Acta Oto-Laryngol. 128, 694 (2008).
81.Kresh J.Y., and Chopra A.: Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch. 462, 75 (2011).
82.Kung C.: A possible unifying principle for mechanosensation. Nature 436, 647 (2005).
83.Chiquet M.: Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18, 417 (1999).
84.Chicurel M.E., Chen C.S., and Ingber D.E.: Cellular control lies in the balance of forces. Curr. Opin. Cell. Biol. 10, 232 (1998).
85.Ingber D.E.: Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97, 163 (2008).
86.Ingber D.E.: Cellular mechanotransduction: Putting all the pieces together again. Faseb J. 20, 811 (2006).
87.Fletcher D.A., and Mullins D.: Cell mechanics and the cytoskeleton. Nature 463, 485 (2010).
88.Chen H.C., and Hu Y.C.: Bioreactors for tissue engineering. Biotechnol. Lett. 28, 1415 (2006).
89.Niklason L.E., Gao J., Abbott W.M., Hirschi K.K., Houser S., Marini R., and Langer R.: Functional arteries grown in vitro. Science 284, 489 (1999).
90.Davisson T., Kunig S., Chen A., Sah R., and Ratcliffe A.: Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20, 842 (2002).
91.Doroski D.M., Levenston M.E., and Temenoff J.S.: Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng. Part A 16, 3457 (2010).
92.Titze I.R.: Mechanical stress in phonation. J. Voice 8, 99 (1994).
93.Titze I.R., Hitchcock R.W., Broadhead K., Webb K., Li W., Gray S.D., and Tresco P.A.: Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37, 1521 (2004).
94.Kutty J.K., and Webb K.: Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen. M 4, 62 (2010).
95.Jia X., Jia M., Jha A.K., Farran A.J.E., and Tong Z.: Dynamic vibrational method and device for vocal fold tissue growth. U.S. Patent No. 12/781,305, May 17, 2010.
96.Farran A.J.E., Teller S.S., Jia F., Clifton R.J., Duncan R.L., and Jia X.: Design and characterization of a dynamic vibrational culture system. J. Tissue Eng. Regen. M (in press 2011). doi: 10.1002/term.514.
97.Ramachandran S., Tseng Y., and Yu Y.B.: Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules 6, 1316 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 16
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 227 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.