Skip to main content
×
Home

Coupling and competition between ferroelectricity, magnetism, strain, and oxygen vacancies in AMnO3 perovskites

  • Astrid Marthinsen (a1), Carina Faber (a2), Ulrich Aschauer (a2) (a3), Nicola A. Spaldin (a2) and Sverre M. Selbach (a1)...
Abstract
Abstract

We use first-principles calculations based on density functional theory to investigate the interplay between oxygen vacancies, A-site cation size/tolerance factor, epitaxial strain, ferroelectricity, and magnetism in the perovskite manganite series, AMnO3 (A = Ca2+, Sr2+, Ba2+). We find that, as expected, increasing the volume through either chemical pressure or tensile strain generally lowers the formation energy of neutral oxygen vacancies consistent with their established tendency to expand the lattice. Increased volume also favors polar distortions, both because competing rotations of the oxygen octahedra are suppressed and because Coulomb repulsion associated with cation off-centering is reduced. Interestingly, the presence of ferroelectric polarization favors ferromagnetic (FM) over antiferromagnetic (AFM) ordering due to suppressed AFM superexchange as the polar distortion bends the Mn–O–Mn bond angles away from the optimal 180°. Intriguingly, we find that polar distortions compete with the formation of oxygen vacancies, which have a higher formation energy in the polar phases; conversely the presence of oxygen vacancies suppresses the onset of polarization. In contrast, oxygen vacancy formation energies are lower for FM than AFM orderings of the same structure type. Our findings suggest a rich and complex phase diagram, in which defect chemistry, polarization, structure, and magnetism can be modified using chemical potential, stress or pressure, and electric or magnetic fields.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Coupling and competition between ferroelectricity, magnetism, strain, and oxygen vacancies in AMnO3 perovskites
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Coupling and competition between ferroelectricity, magnetism, strain, and oxygen vacancies in AMnO3 perovskites
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Coupling and competition between ferroelectricity, magnetism, strain, and oxygen vacancies in AMnO3 perovskites
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Nicola A. Spaldin at nicola.spaldin@mat.ethz.ch
References
Hide All
1. Dagotto E.: Complexity in strongly correlated electronic systems. Science 309, 257 (2005).
2. Dagotto E. and Tokura Y.: Strongly correlated electronic materials: present and future. MRS Bull. 33, 1037 (2008).
3. Rondinelli J.M. and Spaldin N.A.: Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363 (2011).
4. Lee J.H., Fang L., Vlahos E., Ke X., Jung Y.W., Kourkoutis L.F., Kim J.-W., Ryan P.J., Heeg T., Roeckerath M., Goian V., Bernhagen M., Uecker R., Hammel P.C., Rabe K.M., Kamba S., Schubert J., Freeland J.W., Muller D.A., Fennie C.J., Schiffer P., Gopalan V., Johnston-Halperin E., and Schlom D.G.: A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954 (2010).
5. Becher C., Maurel L., Aschauer U., Lilienblum M., Magén C., Meier D., Langenberg E., Trassin M., Blasco J., Krug I.P., Algarabel P.A., Spaldin N.A., Pardo J.A., and Fiebig M.: Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nano 10, 661 (2015).
6. Hill N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).
7. Fennie C.J. and Rabe K.M.: Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).
8. Lee J.H. and Rabe K.M.: Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).
9. Kalinin S.V., Borisevich A., and Fong D.: Beyond condensed matter physics on the nanoscale: the role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 6, 10423 (2012).
10. Kalinin S.V. and Spaldin N.A.: Functional ion defects in transition metal oxides. Science 341, 858 (2013).
11. Fuchigami K., Gai Z., Ward T.Z., Yin L.F., Snijders P.C., Plummer E.W., and Shen J.: Tunable metallicity of the La5/8Ca3/8MnO3 (001) surface by an oxygen overlayer. Phys. Rev. Lett. 102, 066104 (2009).
12. Jorgensen J.D., Dabrowski B., Pei S., Hinks D.G., Soderholm L., Morosin B., Schirber J.E., Venturini E.L., and Ginley D.S.: Superconducting phase of La2CuO4+x: a superconducting composition resulting from phase separation. Phys. Rev. B 38, 11337 (1988).
13. Sluka T., Tagantsev A.K., Bednyakov P., and Setter N.: Free-electron gas at charged domain walls in BaTiO3. Nat. Commun. 4, 1808 (2013).
14. Meier D., Seidel J., Cano A., Delaney K., Kumagai Y., Mostovoy M., Spaldin N.A., Ramesh R., and Fiebig M.: Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284 (2012).
15. Adler S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791 (2004).
16. Bagotsky V.S.: Fuel Cells: Problems and Solutions (Wiley, Hoboken, NJ, 2009).
17. Adler S.B.: Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84, 2117 (2001).
18. Aschauer U., Pfenninger R., Selbach S.M., Grande T., and Spaldin N.A.: Strain-controlled oxygen vacancy formation and ordering in CaMnO3 . Phys. Rev. B 88, 054111 (2013).
19. Bousquet E. and Spaldin N.: Induced magnetoelectric response in Pnma perovskites. Phys. Rev. Lett. 107, 197603 (2011).
20. Günter T., Bousquet E., David A., Boullay P., Ghosez P., Prellier W., and Fiebig M.: Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys. Rev. B 85, 214120 (2012).
21. Poeppelmeier K.R., Leonowicz M.E., Scanlon J.C., Longo J.M., and Yelon W.B.: Structure determination of CaMnO3 and CaMnO2.5 by x-ray and neutron methods. J. Solid State Chem. 45, 71 (1982).
22. Zeng Z., Greenblatt M., and Croft M.: Large magnetoresistance in antiferromagnetic CaMnO3−x . Phys. Rev. B 59, 8784 (1999).
23. Syono Y., Akimoto S.-i, and Kohn K.: Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J. Phys. Soc. Jpn. 26, 993 (1969).
24. Balakirev V.F. and Golikov Y.V.: Phase relations in alkaline earth–manganese–oxygen systems: equilibrium and metastable states. Inorg. Mater. 42, S49 (2006).
25. Negas T. and Roth R.S.: The system SrMnO3−x . J. Solid State Chem. 1, 409 (1970).
26. Takeda T. and Ōhara S.: Magnetic structure of the cubic perovskite type SrMnO3 . J. Phys. Soc. Jpn. 37, 275 (1974).
27. Søndenå R., Ravindran P., Stølen S., Grande T., and Hanfland M.: Electronic structure and magnetic properties of cubic and hexagonal SrMnO3 . Phys. Rev. B 74, 144102 (2006).
28. Rørmark L., Mørch A.B., Wiik K., Stølen S., and Grande T.: Enthalpies of oxidation of CaMnO3−δ, Ca2MnO4−δ and SrMnO3−δ deduced redox properties. Chem. Mater. 13, 4005 (2001).
29. Hardy A.: Structures cristallines de deux varietes allotropiques de manganite de baryum. Nouvelle structure ABO3 . Acta Crystallogr. 15, 179 (1962).
30. Rondinelli J.M., Eidelson A.S., and Spaldin N.A.: Non-d0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3 . Phys. Rev. B 79, 205119 (2009).
31. Kresse G. and Furthmüller J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
32. Kresse G. and Joubert D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
33. Loschen C., Carrasco J., Neyman K.M., and Illas F.: First-principles LDA+U and GGA+U study of cerium oxides: dependence on the effective U parameter. Phys. Rev. B 75, 035115 (2007).
34. Blöchl P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
35. Anisimov V.I., Zaanen J., and Andersen O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I . Phys. Rev. B 44, 943 (1991).
36. Jung J.H., Kim K.H., Eom D.J., Noh T.W., Choi E.J., Yu J., Kwon Y.S., and Chung Y.: Determination of electronic band structures of CaMnO3 and LaMnO3 using optical-conductivity analyses. Phys. Rev. B 55, 15489 (1997).
37. Hong J., Stroppa A., Iniguez J., Picozzi S., and Vanderbilt D.: Spin-phonon coupling effects in transition-metal perovskites: A DFT + U and hybrid-functional study. Phys. Rev. B 85, 054417 (1012).
38. Monkhorst H.J. and Pack J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
39. Kunc K. and Martin R.M.: Ab initio force constants of GaAs: a new approach to calculation of phonons and dielectric properties. Phys. Rev. Lett. 48, 406 (1982).
40. Togo A. and Tanaka I.: First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).
41. King-Smith R.D. and Vanderbilt D.: Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651 (1993).
42. Vanderbilt D. and King-Smith R.D.: Electric polarization as a bulk quantity and its relation to surface charge. Phys. Rev. B 48, 4442 (1993).
43. Bhattacharjee S., Bousquet E., and Ghosez P.: Engineering multiferroism in CaMnO3 . Phys. Rev. Lett. 102, 117602 (2009).
44. Wu Z. and Cohen R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).
45.Tolerance factor calculator http://www.me.utexas.edu/~benedekgroup/ToleranceFactorCalculator/#home (accessed August 3, 2016).
46. Goodenough J.B.: Theory of the role of covalence in the perovskite-type manganites La,M(II)MnO3 . Phys. Rev. 100, 564 (1955).
47. Pratt D.K., Lynn J.W., Mais J., Chmaissem O., Brown D.E., Kolesnik S., and Dabrowski B.: Neutron scattering studies of the ferroelectric distortion and spin dynamics in the type-1 multiferroic perovskite Sr0.56Ba0.44MnO3 . Phys. Rev. B 90, 140401 (2014).
48. Giovannetti G., Kumar S., Ortix C., Capone M., and van den Brink J.: Microscopic origin of large negative magnetoelectric coupling in Sr1/2Ba1/2MnO3 . Phys. Rev. Lett. 109, 107601 (2012).
49. Chmaissem O., Dabrowski B., Kolesnik S., Mais J., Brown D.E., Kruk R., Prior P., Pyles B., and Jorgensen J.D.: Relationship between structural parameters and the Néel temperature in Sr1−xCaxMnO3 (0<~ x < ~1) and Sr1−yBayMnO3 (y< ~ 0.2). Phys. Rev. B 64, 134412 (2001).
50. Filippetti A. and Spaldin N.A.: Strong-correlation effects in Born effective charges. Phys. Rev. B 68, 045111 (2003).
51. Cohen R.E.: Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992).
52. Rørmakr L., Wiik K., Stølen S., and Grande T.: Oxygen stoichiometry and structural properties of La1−xAxMnO3+δ (A = Ca or Sr and 0 ≤ x ≤ 1). J. Mater. Chem. 12, 1058 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 215
Total number of PDF views: 793 *
Loading metrics...

Abstract views

Total abstract views: 1512 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 14th December 2017. This data will be updated every 24 hours.