Skip to main content
×
×
Home

Dewetting of Co thin films obtained by atomic layer deposition due to the thermal reduction process

  • Daniela Alburquenque (a1), Victoria Bracamonte (a2), Marcela Del Canto (a3), Alejandro Pereira (a3) and Juan Escrig (a1) (a3)...
Abstract

Cobalt oxide thin films with different thicknesses were synthesized by atomic layer deposition. After a thermal reduction process, under a controlled atmosphere of hydrogen, it was possible to convert cobalt oxide to metallic cobalt. The different thicknesses were obtained considering from 500 to 2000 cycles of CoCp2/O3. The thin films were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray microanalysis, and by magneto-optical Kerr effect measurements. The indirect synthesis process allows us to obtain cobalt oxide and cobalt thin films with controlled thicknesses and extraordinary magnetic properties, with coercivities above 500 Oe.

Copyright
Corresponding author
Address all correspondence to Juan Escrig at juan.escrig@usach.cl
References
Hide All
1. Li, G., Wang, H., Zhao, Y., Wang, Q., Wang, K., and Wang, Z.: Effect of oxidation temperature and high magnetic field on the structure and optical properties of Co-doped ZnO prepared by oxidizing Zn/Co bilayer thin films. Mater. Chem. Phys. 162, 8893 (2015).
2. Franczak, A., Levesque, A., Zabinski, P., Li, D., Czapkiewicz, M., Kowalik, R., Bohr, F., Wang, Q., and Chopart, J-P.: Growth and magnetic properties dependence of the Co-Cu/Cu films electrodeposited under high magnetic fields. Mater. Chem. Phys. 162, 222228 (2015).
3. Osaka, T., Asahi, T., Kawaji, J., and Yokoshima, T.: Development of high-performance magnetic thin film for high-density magnetic recording. Electrochim. Acta 50, 45764585 (2005).
4. Shimazawa, K., Tsuchiya, Y., Mizuno, T., Hara, S., Chou, T., Miyauchi, D., Machita, T., Ayukawa, T., Ichiki, T., and Noguchi, K.: CPP-GMR film with ZnO-based novel spacer for future high-density magnetic recording. IEEE Trans. Magn. 46, 14871490 (2010).
5. Katada, H., Nakamoto, K., Hoshiya, H., Hoshino, K., Yoshida, N., Shiimoto, M., Sato, Y., Takazawa, H., Yasui, K., Hatatani, M., Watanabe, K., Ikeda, Y., and Meguro, K.: CPP-GMR heads with a current screen layer for high areal density, J . Magn. Magn. Mater. 320, 29752979 (2008).
6. De Toro, J.A., Marqués, D.P., Muñiz, P., Skumryev, V., Sort, J., Givord, D., and Nogués, J.: High temperature magnetic stabilization of cobalt nanoparticles by an antiferromagnetic proximity effect. Phys. Rev. Lett. 115, 057201 (2015).
7. Liakakos, N., Blon, T., Achkar, C., Vilar, V., Cormary, B., Tan, R.P., Benamara, O., Chaboussant, G., Ott, F., Warot-Fonrose, B., Snoeck, E., Chaudret, B., Soulantica, K., and Respaud, M.: Solution epitaxial growth of cobalt nanowires on crystalline substrates for data storage densities beyond 1 Tbit/in2. Nano Lett. 14, 34813486 (2014).
8. Ru, G-P., Li, B-Z., Jiang, G-B., Qu, X-P., Liu, J., Van Meirhaeghe, R.L., and Cardon, F.: Surface and interface morphology of CoSi2 films formed by multilayer solid-state reaction. Mater. Charact. 48, 229235 (2002).
9. Haag, N., Laux, M., Stöckl, J., Kollamana, J., Seide, J., Großmann, N., Fetzer, R., Kelly, L.L., Wei, Z., Stadtmüller, B., Cinchetti, M., and Aeschlimann, M.: Epitaxial growth of thermally stable cobalt films on Au(111). New J. Phys. 18, 103054 (2016).
10. Vovk, V. and Schmitz, G.: Thermal stability of a Co/Cu giant magnetoresistance (GMR) multilayer system. Ultramicroscopy 109, 637643 (2009).
11. Zhang, H., Bi, J., Wang, H., Hu, H., Li, J., Ji, L., and Liu, M.: Study of total ionizing dose induced read bit errors in magneto-resistive random access memory. Microelectron. Reliab. 67, 104110 (2016).
12. Jamali, M., Lv, Y., Zhao, Z., and Wanga, J-P.: Sputtering of cobalt film with perpendicular magnetic anisotropy on disorder-free graphene. AIP Adv. 4, 107102 (2014).
13. Ehsani, M.H., Jalali Mehrabad, M., and Kameli, P.: Fabrication of Co thin films using pulsed laser deposition method with or without employing external magnetic field. J. Magn. Magn. Mater. 417, 117121 (2016).
14. Ootera, Y., Shimada, T., Kado, M., Quinsat, M., Morise, H., Nakamura, S., and Kondo, T.: High-purity cobalt thin films with perpendicular magnetic anisotropy prepared by chemical vapor deposition. Appl. Phys. Express 8, 113005 (2015).
15. Daub, M., Knez, M., Goesele, U., and Nielsch, K.: Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. J. Appl. Phys. 101, 09J111 (2007).
16. Leskela, M. and Ritala, M.: Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409, 138146 (2002).
17. Parka, J., Leeb, H-B-R., Kimc, D., Yoona, J., Lansalotd, C., Gatineaud, J., Chevreld, H., and Kima, H.: Plasma-enhanced atomic layer deposition of Co using Co(MeCp)2 precursor. J. Energy Chem. 22, 403407 (2013).
18. Oh, I-K., Kim, H., and Lee, H-B-R.: Growth mechanism of Co thin films formed by plasma-enhanced atomic layer deposition using NH3 as plasma reactant. Curr. Appl. Phys. 17, 333338 (2017).
19. Yoon, J., Lee, H-B-R., Kim, D., Cheon, T., Kim, S-H., and Kim, H.: Atomic layer deposition of Co using N2/H2 plasma as a reactant. J. Electrochem. Soc. 158, H1179H1182 (2011).
20. Profijt, H.B., Potts, S.E., van de Sanden, M.C.M., and Kessels, W.M.M.: Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J. Vac. Sci. Technol. A 29, 050801 (2011).
21. Shimizu, H., Sakoda, K., Momose, T., Koshi, M., and Shimogaki, Y.: Hot-wire-assisted atomic layer deposition of a high quality cobalt film using cobaltocene: elementary reaction analysis on NHx radical formation. J. Vac. Sci. Technol. A 30, 01A144 (2012).
22. Kerrigan, M.M., Klesko, J.P., Rupich, S.M., Dezelah, C.L., Kanjolia, R.K., Chabal, Y.J., and Winter, C.H.: Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. J. Chem. Phys. 146, 052813 (2017).
23. Bhattacharyya, A.S., Kabiraj, D., Yusuf, S.M., and Dev, B.N.: Magnetic studies of ion beam irradiated Co/CoO thin films. Phys. Proc. 54, 8789 (2014).
24. Pereira, A., Palma, J.L., Denardin, J.C., and Escrig, J.: Temperature-dependent magnetic properties of Ni nanotubes synthesized by atomic layer deposition. Nanotechnology 27, 345709 (2016).
25. Guyon, C., Barkallah, A., Rousseau, F., Giffard, K., Morvan, D., and Tatoulian, M.: Deposition of cobalt oxide thin films by plasma-enhanced chemical vapour deposition (PECVD) for catalytic applications. Surf. Coat. Technol. 206, 16731679 (2011).
26. Alburquenque, D., Del Canto, M., Arenas, C., Tejo, F., Pereira, A., and Escrig, J.: Dewetting of Ni thin films obtained by atomic layer deposition due to the thermal reduction process: variation of the thicknesses. Thin Solid Films 638, 114118 (2017).
27. Espejo, A.P., Zierold, R., Gooth, J., Dendooven, J., Detavernier, C., Escrig, J., and Nielsch, K.: Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction. Nanotechnology 27, 345707 (2016).
28. Alburquenque, D., Pérez-Erices, L., Pereira, A., and Escrig, J.: Tailoring the magnetic properties of Ni81Fe19 thin films by varying their thickness. J. Magn. Magn. Mater. 441, 656659 (2017).
29. Thompson, C.V.: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399434 (2012).
30. Lim, B.S., Rahtu, A., and Gordon, R.G.: Atomic layer deposition of transition metals. Nat. Mater. 2, 749754 (2003).
31. Grzelczak, M., Zhang, J., Pfrommer, J., Hartmann, J., Driess, M., Antonietti, M., and Wang, X.: Electro- and photochemical water oxidation on ligand-free Co3O4 nanoparticles with tunable sizes. ACS Catal. 3, 383388 (2013).
32. González Montiel, M., Santiago-Jacinto, P., Díaz Góngora, J.A.I., Reguera, E., and Rodríguez-Gattorno, G.: Synthesis and thermal behavior of metallic cobalt micro and nanostructures. Nano-Micro Lett. 3, 1219 (2011).
33. Beswicka, O., Parastaeva, A., Yuranova, I., LaGrangeb, T., Dysona, P.J., and Kiwi-Minskera, L.: Highly dispersed cobalt oxides nanoparticles on activated carbonfibres as efficient structured catalysts for the transfer hydrogenation of m-nitrostyrene. Catal. Today 279, 2935 (2016).
34. Langford, J.I. and Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed