Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-19T05:26:28.005Z Has data issue: false hasContentIssue false

Dewetting of Co thin films obtained by atomic layer deposition due to the thermal reduction process

Published online by Cambridge University Press:  11 September 2017

Daniela Alburquenque
Affiliation:
Departamento de Física, Universidad de Santiago de Chile, 9170124 Santiago, Chile
Victoria Bracamonte
Affiliation:
Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba, IFEG, CONICET, Córdoba, Argentina
Marcela Del Canto
Affiliation:
Center for the Development of Nanoscience and Nanotechnology, 9170124 Santiago, Chile
Alejandro Pereira
Affiliation:
Center for the Development of Nanoscience and Nanotechnology, 9170124 Santiago, Chile
Juan Escrig*
Affiliation:
Departamento de Física, Universidad de Santiago de Chile, 9170124 Santiago, Chile Center for the Development of Nanoscience and Nanotechnology, 9170124 Santiago, Chile
*
Address all correspondence to Juan Escrig at juan.escrig@usach.cl
Get access

Abstract

Cobalt oxide thin films with different thicknesses were synthesized by atomic layer deposition. After a thermal reduction process, under a controlled atmosphere of hydrogen, it was possible to convert cobalt oxide to metallic cobalt. The different thicknesses were obtained considering from 500 to 2000 cycles of CoCp2/O3. The thin films were characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray microanalysis, and by magneto-optical Kerr effect measurements. The indirect synthesis process allows us to obtain cobalt oxide and cobalt thin films with controlled thicknesses and extraordinary magnetic properties, with coercivities above 500 Oe.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, G., Wang, H., Zhao, Y., Wang, Q., Wang, K., and Wang, Z.: Effect of oxidation temperature and high magnetic field on the structure and optical properties of Co-doped ZnO prepared by oxidizing Zn/Co bilayer thin films. Mater. Chem. Phys. 162, 8893 (2015).CrossRefGoogle Scholar
2. Franczak, A., Levesque, A., Zabinski, P., Li, D., Czapkiewicz, M., Kowalik, R., Bohr, F., Wang, Q., and Chopart, J-P.: Growth and magnetic properties dependence of the Co-Cu/Cu films electrodeposited under high magnetic fields. Mater. Chem. Phys. 162, 222228 (2015).Google Scholar
3. Osaka, T., Asahi, T., Kawaji, J., and Yokoshima, T.: Development of high-performance magnetic thin film for high-density magnetic recording. Electrochim. Acta 50, 45764585 (2005).Google Scholar
4. Shimazawa, K., Tsuchiya, Y., Mizuno, T., Hara, S., Chou, T., Miyauchi, D., Machita, T., Ayukawa, T., Ichiki, T., and Noguchi, K.: CPP-GMR film with ZnO-based novel spacer for future high-density magnetic recording. IEEE Trans. Magn. 46, 14871490 (2010).Google Scholar
5. Katada, H., Nakamoto, K., Hoshiya, H., Hoshino, K., Yoshida, N., Shiimoto, M., Sato, Y., Takazawa, H., Yasui, K., Hatatani, M., Watanabe, K., Ikeda, Y., and Meguro, K.: CPP-GMR heads with a current screen layer for high areal density, J . Magn. Magn. Mater. 320, 29752979 (2008).CrossRefGoogle Scholar
6. De Toro, J.A., Marqués, D.P., Muñiz, P., Skumryev, V., Sort, J., Givord, D., and Nogués, J.: High temperature magnetic stabilization of cobalt nanoparticles by an antiferromagnetic proximity effect. Phys. Rev. Lett. 115, 057201 (2015).Google Scholar
7. Liakakos, N., Blon, T., Achkar, C., Vilar, V., Cormary, B., Tan, R.P., Benamara, O., Chaboussant, G., Ott, F., Warot-Fonrose, B., Snoeck, E., Chaudret, B., Soulantica, K., and Respaud, M.: Solution epitaxial growth of cobalt nanowires on crystalline substrates for data storage densities beyond 1 Tbit/in2. Nano Lett. 14, 34813486 (2014).CrossRefGoogle ScholarPubMed
8. Ru, G-P., Li, B-Z., Jiang, G-B., Qu, X-P., Liu, J., Van Meirhaeghe, R.L., and Cardon, F.: Surface and interface morphology of CoSi2 films formed by multilayer solid-state reaction. Mater. Charact. 48, 229235 (2002).Google Scholar
9. Haag, N., Laux, M., Stöckl, J., Kollamana, J., Seide, J., Großmann, N., Fetzer, R., Kelly, L.L., Wei, Z., Stadtmüller, B., Cinchetti, M., and Aeschlimann, M.: Epitaxial growth of thermally stable cobalt films on Au(111). New J. Phys. 18, 103054 (2016).Google Scholar
10. Vovk, V. and Schmitz, G.: Thermal stability of a Co/Cu giant magnetoresistance (GMR) multilayer system. Ultramicroscopy 109, 637643 (2009).Google Scholar
11. Zhang, H., Bi, J., Wang, H., Hu, H., Li, J., Ji, L., and Liu, M.: Study of total ionizing dose induced read bit errors in magneto-resistive random access memory. Microelectron. Reliab. 67, 104110 (2016).Google Scholar
12. Jamali, M., Lv, Y., Zhao, Z., and Wanga, J-P.: Sputtering of cobalt film with perpendicular magnetic anisotropy on disorder-free graphene. AIP Adv. 4, 107102 (2014).CrossRefGoogle Scholar
13. Ehsani, M.H., Jalali Mehrabad, M., and Kameli, P.: Fabrication of Co thin films using pulsed laser deposition method with or without employing external magnetic field. J. Magn. Magn. Mater. 417, 117121 (2016).Google Scholar
14. Ootera, Y., Shimada, T., Kado, M., Quinsat, M., Morise, H., Nakamura, S., and Kondo, T.: High-purity cobalt thin films with perpendicular magnetic anisotropy prepared by chemical vapor deposition. Appl. Phys. Express 8, 113005 (2015).CrossRefGoogle Scholar
15. Daub, M., Knez, M., Goesele, U., and Nielsch, K.: Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. J. Appl. Phys. 101, 09J111 (2007).Google Scholar
16. Leskela, M. and Ritala, M.: Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409, 138146 (2002).CrossRefGoogle Scholar
17. Parka, J., Leeb, H-B-R., Kimc, D., Yoona, J., Lansalotd, C., Gatineaud, J., Chevreld, H., and Kima, H.: Plasma-enhanced atomic layer deposition of Co using Co(MeCp)2 precursor. J. Energy Chem. 22, 403407 (2013).Google Scholar
18. Oh, I-K., Kim, H., and Lee, H-B-R.: Growth mechanism of Co thin films formed by plasma-enhanced atomic layer deposition using NH3 as plasma reactant. Curr. Appl. Phys. 17, 333338 (2017).Google Scholar
19. Yoon, J., Lee, H-B-R., Kim, D., Cheon, T., Kim, S-H., and Kim, H.: Atomic layer deposition of Co using N2/H2 plasma as a reactant. J. Electrochem. Soc. 158, H1179H1182 (2011).Google Scholar
20. Profijt, H.B., Potts, S.E., van de Sanden, M.C.M., and Kessels, W.M.M.: Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J. Vac. Sci. Technol. A 29, 050801 (2011).CrossRefGoogle Scholar
21. Shimizu, H., Sakoda, K., Momose, T., Koshi, M., and Shimogaki, Y.: Hot-wire-assisted atomic layer deposition of a high quality cobalt film using cobaltocene: elementary reaction analysis on NHx radical formation. J. Vac. Sci. Technol. A 30, 01A144 (2012).Google Scholar
22. Kerrigan, M.M., Klesko, J.P., Rupich, S.M., Dezelah, C.L., Kanjolia, R.K., Chabal, Y.J., and Winter, C.H.: Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. J. Chem. Phys. 146, 052813 (2017).Google Scholar
23. Bhattacharyya, A.S., Kabiraj, D., Yusuf, S.M., and Dev, B.N.: Magnetic studies of ion beam irradiated Co/CoO thin films. Phys. Proc. 54, 8789 (2014).Google Scholar
24. Pereira, A., Palma, J.L., Denardin, J.C., and Escrig, J.: Temperature-dependent magnetic properties of Ni nanotubes synthesized by atomic layer deposition. Nanotechnology 27, 345709 (2016).Google Scholar
25. Guyon, C., Barkallah, A., Rousseau, F., Giffard, K., Morvan, D., and Tatoulian, M.: Deposition of cobalt oxide thin films by plasma-enhanced chemical vapour deposition (PECVD) for catalytic applications. Surf. Coat. Technol. 206, 16731679 (2011).Google Scholar
26. Alburquenque, D., Del Canto, M., Arenas, C., Tejo, F., Pereira, A., and Escrig, J.: Dewetting of Ni thin films obtained by atomic layer deposition due to the thermal reduction process: variation of the thicknesses. Thin Solid Films 638, 114118 (2017).CrossRefGoogle Scholar
27. Espejo, A.P., Zierold, R., Gooth, J., Dendooven, J., Detavernier, C., Escrig, J., and Nielsch, K.: Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction. Nanotechnology 27, 345707 (2016).CrossRefGoogle ScholarPubMed
28. Alburquenque, D., Pérez-Erices, L., Pereira, A., and Escrig, J.: Tailoring the magnetic properties of Ni81Fe19 thin films by varying their thickness. J. Magn. Magn. Mater. 441, 656659 (2017).Google Scholar
29. Thompson, C.V.: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399434 (2012).Google Scholar
30. Lim, B.S., Rahtu, A., and Gordon, R.G.: Atomic layer deposition of transition metals. Nat. Mater. 2, 749754 (2003).Google Scholar
31. Grzelczak, M., Zhang, J., Pfrommer, J., Hartmann, J., Driess, M., Antonietti, M., and Wang, X.: Electro- and photochemical water oxidation on ligand-free Co3O4 nanoparticles with tunable sizes. ACS Catal. 3, 383388 (2013).CrossRefGoogle Scholar
32. González Montiel, M., Santiago-Jacinto, P., Díaz Góngora, J.A.I., Reguera, E., and Rodríguez-Gattorno, G.: Synthesis and thermal behavior of metallic cobalt micro and nanostructures. Nano-Micro Lett. 3, 1219 (2011).CrossRefGoogle Scholar
33. Beswicka, O., Parastaeva, A., Yuranova, I., LaGrangeb, T., Dysona, P.J., and Kiwi-Minskera, L.: Highly dispersed cobalt oxides nanoparticles on activated carbonfibres as efficient structured catalysts for the transfer hydrogenation of m-nitrostyrene. Catal. Today 279, 2935 (2016).Google Scholar
34. Langford, J.I. and Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).CrossRefGoogle Scholar