Skip to main content
×
Home
    • Aa
    • Aa

Strong piezoelectricity in individual GaN nanowires

  • Majid Minary-Jolandan (a1), Rodrigo A. Bernal (a1) and Horacio D. Espinosa (a1)
Abstract
Abstract

GaN nanowires are promising building blocks for future nanoelectronics, optoelectronic devices, and nanogenerators. Here, we report on strong piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric constant using piezoresponse force microscopy. Our experimental results show that individual c-axis GaN nanowires, with a characteristic dimension as small as 65 nm, show a shear piezoelectric constant of d15 ~ 10 pm/V, which is several times that measured in bulk. The revealed strong piezoelectricity could open promising opportunities for application of GaN nanowires in nanowire-based sensors and generators for self-powered nanodevices.

Copyright
Corresponding author
Address all correspondence to Horacio D. Espinosa at espinosa@northwestern.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.P. Yang , R. Yan , and M. Fardy : Semiconductor nanowire: what's next? Nano Lett. 10, 15291536 (2010).

2.Z.L. Wang and J. Song : Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).

3.R. Yang , Y. Qin , L. Dai , and Z.L. Wang : Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 3439 (2009).

4.Y. Qi , J. Kim , T.D. Nguyen , B. Lisko , P.K. Purohit , and M.C. McAlpine : Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 13311336 (2011).

5.R. Agrawal , B. Peng , E.E. Gdoutos , and H.D. Espinosa : Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8, 36683674 (2008).

6.R.A. Bernal , R. Agrawal , B. Peng , K.A. Bertness , N.A. Sanford , A.V. Davydov , and H.D. Espinosa : Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 11, 548555 (2011).

7.Y. Huang , X. Duan , Y. Cui , and C.M. Lieber : Gallium nitride nanowire nanodevices. Nano Lett. 2, 101104 (2002).

8.Z. Zhong , F. Qian , D. Wang , and C.M. Lieber : Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343346 (2003).

9.J.C. Johnson , H.-J. Choi , K.P. Knutsen , R.D. Schaller , P. Yang , and R.J. Saykally : Single gallium nitride nanowire lasers. Nat. Mater. 1, 106110 (2002).

10.C.-T. Huang , J. Song , W.-F. Lee , Y. Ding , Z. Gao , Y. Hao , L.-J. Chen , and Z.L. Wang : GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132(13), 47664771 (2010).

11.X. Xu , A. Potie , R. Songmuang , J. Lee , B. Bercu , T. Baron , B. Salem , and L. Montes : An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011).

12.P. Güthner and K. Dransfeld : Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137 (1992).

13.O. Kolosov , A. Gruverman , J. Hatano , K. Takahashi , and H. Tokumoto : Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 43094312 (1995).

14.M.-H. Zhao , Z.-L. Wang , and S.X. Mao : Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587590 (2004).

16.W.S. Yun , J.J. Urban , Q. Gu , and H. Park : Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447450 (2002).

18.M. Minary-Jolandan and M.-F. Yu : Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 18591863 (2009).

19.B.J. Rodriguez , A. Gruverman , A.I. Kingon , and R.J. Nemanich : Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials. J. Crystal Growth 246, 252258 (2002).

20.R. Agrawal and H.D. Espinosa : Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11(2), 786790 (2011).

21.I.K. Bdikin , J. Gracio , R. Ayouchi , R. Schwarz , and A.L. Kholkin : Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).

22.K.A. Bertness , A. Roshko , L.M. Mansfield , T.E. Harvey , and N.A. Sanford : Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Crystal Growth 310, 31543158 (2008).

23.M. Minary-Jolandan and M.-F. Yu : Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).

24.F. Bernardini and V. Fiorentini : First-principles calculation of the piezoelectric tensor d of III–V nitrides. Appl. Phys. Lett. 80, 4145 (2002).

25.S. Muensit , E.M. Goldys , and I.L. Guy : Shear piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 3965 (1999).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary Material

Minary-Jolandan Supplementary Material
Minary-Jolandan Supplementary Material

 Word (1.4 MB)
1.4 MB