Skip to main content Accessibility help

Gas-phase synthesis of nanoparticles: present status and perspectives

  • Y. Huttel (a1), L. Martínez (a1), A. Mayoral (a2) and I. Fernández (a3)

There is an increasing interest in the generation of well-defined nanoparticles (NPs) not only because of their size-related particular properties, but also because they are promising building blocks for more complex materials in nanotechnology.

Here, we will shortly introduce the gas-phase synthesis technology that has evolved rapidly in the last years and allows the fabrication of complex NPs with controllable and tuneable chemical composition and structure while keeping very good control over the size distribution. We will also address some limitations of the technology (stability over time, production yield, etc.) and discuss possible solutions.

Corresponding author
Address all correspondence to Y. Huttel at
Hide All
1.Frank, F., Schulze, W., Tesche, B., Urban, J., and Winter, B.: Formation of metal-clusters and molecules by means of the gas aggregation technique and characterization of size distribution. Surf. Sci. 156, 9099 (1985).
2.Binns, C.: Handbook of Metal Physics, Volume 5: Metallic Nanoparticles (Elsevier, Hungary, 2008).
3.Huttel, Y. ed: Gas-Phase Synthesis of Nanoparticles (Wiley, Singapore, 2017).
4.Haberland, H., Karrais, M., and Mall, M.: A new type of cluster and cluster ion-source. Z. Phys. D Atoms Mol. Clusters 20, 413415 (1991).
5.Haberland, H., Karrais, M., Mall, M., and Thurner, Y.: Thin-films from energetic cluster impact – a feasibility study. J. Vac. Sci. Technol. A 10, 32663271 (1992).
6.Bai, J. and Wang, J.-P.: High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 87, 152502 (2005).
7.Hennes, M., Lotnyk, A., and Mayr, S.G.: Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles. Beilstein J. Nanotechnol. 5, 466475 (2014).
8.Benelmekki, M., Bohra, M., Kim, J.-H., Diaz, R., Vernieres, J., Grammatikopoulos, P., and Sowwan, M.: A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale 6, 3532 (2014).
9.Johnson, G.E., Colby, R., and Laskin, J.: Soft landing of bare nanoparticles with controlled size, composition, and morphology. Nanoscale 7, 3491 (2015).
10.Martínez, L., Díaz, M., Román, E., Ruano, M., Llamosa P, D., and Huttel, Y.: Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances. Langmuir 28, 11241 (2012).
11.Llamosa, D., Ruano, M., Martínez, L., Mayoral, A., Roman, E., García-Hernández, M., and Huttel, Y.: The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale 6, 13483 (2014).
12.Mayoral, A., Llamosa, D., and Huttel, Y.: A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 51, 8442 (2015).
13.Martínez, L., Mayoral, A., Espiñeira, M., Roman, E., Palomares, F.J., and Huttel, Y.: Core@shell, Au@TiOx nanoparticles by gas phase synthesis. Nanoscale 9, 6463 (2017).
14.Chen, B., ten Brink, G.H., Palasantzas, G., and Kooi, B.J.: Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 6, 39546 (2016).
15.Llamosa, D., Martínez, L., and Huttel, Y.: Multiple ion cluster source for the generation of magnetic nanoparticles: investigation of the efficiency as a function of the working parameters for the case of cobalt. Dataset Pap. Nanotechnol. 2014, 584391 (2014).
16.Ruano, M., Martínez, L., and Huttel, Y.: Investigation of the working parameters of a single magnetron of a multiple ion cluster source: determination of the relative influence of the parameters on the size and density of nanoparticles. Dataset Pap. Sci. 2013, 597023 (2013).
17.Martínez, L., Lauwaet, K., Santoro, G., Sobrado, J.M., Peláez, R.J., Herrero, V.J., Tanarro, I., Ellis, G.J., Cernicharo, J., Joblin, C., Huttel, Y., and Martín-Gago, J.A.: Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 8, 7250 (2018).
18.Panjan, M., Loquai, S., Klemberg-Sapieha, J.E., and Martinu, L.: Non-uniform plasma distribution in dc magnetron sputtering: origin, shape and structuring of spokes. Plasma Sources Sci. Technol. 24, 065010 (2015).
19.Ganeva, M., Pipa, A.V., and Hippler, R.: The influence of target erosion on the mass spectra of clusters formed in the planar DC magnetron sputtering source. Surf. Coat. Technol. 213, 4147 (2012).
20.Rai, A., Mutzke, A., Bandelow, G., Schneider, R., Ganeva, M., Pipa, A.V., and Hippler, R.: Operational limit of a planar DC magnetron cluster source due to target erosion. Nucl. Instrum. Methods Phys. Res. B 316, 612 (2013).
21.De Bosscher, W. and Lievens, H.: Advances in magnetron sputter sources. Thin Solid Films 351, 15 (1999).
22.Marek, A., Valter, J., Kadlec, S., and Vyskočil, J.: Gas aggregation nanocluster source - Reactive sputter deposition of copper and titanium nanoclusters. Surf. Coat. Technol. 205, S573 (2011).
23.Peter, T., Polonskyi, O., Gojdka, B., Ahadi, A.M., Strunskus, T., Zaporojtchenko, V., Biederman, H., and Faupel, F.: Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source. J. Appl. Phys. 112, 114321 (2012).
24.Polasek, J., Masek, K., Marek, A., and Vyskocil, J.: Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation. Thin Solid Films 591, 194 (2015).
25.Krishnan, G., de Graaf, S., ten Brink, G.H., Persson, P.O.Å., Kooi, B.J., and Palasantzas, G.: Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles. Nanoscale 9, 81498156 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Huttel et al. supplementary material
Huttel et al. supplementary material 1

 Unknown (5.1 MB)
5.1 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed