Skip to main content Accessibility help

Hot electrons coupling-enhanced photocatalysis of super black carbon aerogels/titanium oxide composite

  • Hongqiang Wang (a1) (a2), Xinru He (a2), Bin Zhou (a1) (a2), Jun Shen (a1) (a2) and Ai Du (a1) (a2)...


To evaluate whether the photocatalysis efficiency of titanium oxide (TiO2) increases under the shading of carbon aerogel (CA), super black CA/TiO2 composite sheets were directly fabricated by physical mixing of CA, TiO2 powder, and binder. It was found that the photocatalysis efficiency of composite sheets were higher than that of pure TiO2 sheet. We attribute this phenomenon to the hot electrons coupling between CA and TiO2. Besides the direct light absorption of TiO2, the hot electrons generating and indirect energy transfer from CA to TiO2 may enhance the photocatalysis efficiency of TiO2.


Corresponding author

Address all correspondence to Ai Du at


Hide All

These authors contributed equally to this work and should be considered co-first authors.



Hide All
1.Turkar, S.S., Bharti, D.B., and Gaikwad, G.S.: Various methods involved in waste water treatment to control water pollution. J. Chem. Pharm. Res. 3, 58 (2011).
2.Cheng, X., Wang, Z., Jiang, X., Li, T., Lau, Cher Hon, Guo, Z., Ma, J., and Shao, L.: Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Progress Mater. Sci. 92, 258283 (2018).
3.Brostow, W. and Lobland, H.E.H.: Materials: Introduction and Applications (WILEY, Hoboken, USA, 2017).
4.Zhang, L., Qin, M., Yu, W., Zhang, Q., Xie, H., Sun, Z., Shao, Q., Guo, X., Hao, L., Zheng, Y., and Guo, Z.: Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164, H1086H1090 (2017).
5.Zhou, W., Liu, Q., Zhu, Z., and Zhang, J.: Preparation and properties of vanadium-doped TiO2 photocatalysts. J. Phys. D: Appl. Phys. 43, 035301 (2010).
6.Ahmadi, M. and Guinel, M.J-F.: Doping of TiO2 nanopowders with vanadium for the reduction of its band gap reaching the visible light spectrum region. MRS Commun. 4, 7376 (2014).
7.Wang, C., Zhao, M., Li, J., Yu, J., Sun, S., Ge, S., Guo, X., Xie, F., Jiang, B., Wujcik, Evan K., Huang, Y., Wang, N., and Guo, Z.: Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263271 (2017).
8.Song, B., Wang, T., Sun, H., Shao, Q., Zhao, J., Song, K., Hao, L., Wang, L., and Guo, Z.: Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 1576915777 (2017).
9.Chang, T-F.M., Lin, W-H., Chen, C-Y., Hsu, Y-J., and Sone, M.: The hydrobaric effect on cathodically deposited titanium dioxide photocatalyst. MRS Commun. 7, 189192 (2017).
10.Park, Y., Kim, W., Park, H., Tachikawa, Y., Majima, T., and Choi, W.: Carbon-doped TiO2 photocatalysized without using an external carbon precursor and the visible light activity. Appl. Catal. B: Environ. 91, 355361 (2009).
11.Zhao, H., Deng, W., and Li, Y.: Atomic layer deposited TiO2 ultrathin layer on Ag-ZnO nanorods for stable and efficient photocatalytic degradation of RhB. Adv. Compos. Hybrid. Mater. doi: org/10.1007/s42114-017-0015-0, published online 27 Nov 2017.
12.Zhang, L., Yu, W., Han, C., Guo, J., Zhang, Q., Xie, H., Shao, Q., Sun, Z., and Guo, Z.: Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651H656 (2017).
13.Fan, Y., Han, D., Song, Z., Sun, Z., Dong, X., and Niu, L.: Regulations of silver halide nanostructure and composites on photocatalysis. Adv. Compos. Hybrid. Mater. dio: 10.1007/s42114-017-0005-2, published on line 27 Nov 2017.
14.Sene, J.J., Zeltner, W.A., and Anderson, M.A.: Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin film electrode materials. J. Phys. Chem. B 107, 15971603 (2003).
15.Du, A., Zhou, B., Zhang, Z., and Shen, J.: A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6, 941968 (2013).
16.Schwan, M. and Ratke, L.: Flexible carbon aerogels. Carbon. N. Y. 2, 22 (2016).
17.Feng, J., Feng, J., Jiang, Y., and Zhang, C.: Ultralow density carbon aerogels with low thermal conductivity up to 2000 °C. Mater. Lett. 65, 34543456 (2011).
18.Sun, H., Xu, Z., and Gao, C.: Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 25542560 (2013).
19.Guo, K., Hu, Z., Song, H., Du, X., Zhong, L., and Chen, X.: Low-density graphene/carbon composite aerogels prepared at ambient pressure with high mechanical strength and low thermal conductivity. RSC Adv. 5, 51975204 (2014).
20.Xie, P., Sun, W., Liu, Y., Du, A., Zhang, Z., Wu, G., and Fan, R.: Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598606 (2018).
21.Zubizarreta, L., Menéndez, J.A., Job, N., Marco-Lozar, J.P., Pirard, J.P., Pis, J.J., Linares-Solano, A., Cazorla-Amorós, D., and Arenillas, A.: Ni-doped carbon xerogels for H2 storage. Carbon. N. Y. 48, 27222733 (2010).
22.Kim, S.J., Hwang, S.W., and Hyun, S.H.: Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40, 725731 (2005).
23.Tian, H., Wu, J., Zhang, W., Yang, S., Li, F., Qi, Y., Zhou, R., Qi, X., Zhao, L., and Wang, X.: High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal. Chem. Eng. J. 313, 10511060 (2017).
24.Wang, H., Du, A., Zhang, Z., Zhou, B., and Shen, J.: An optical dustbin made by the subwavelength induced super-black carbon aerogels. J. Mater. Res. 32, 35243531 (2017).
25.Ran, F., Yang, X., and Shao, L.: Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv. Compos. Hybrid. Mater. 1, 3255 (2018).
26.Meier, S.R., Korwi, M.L., and Merzbacher, C.I.: Carbon aerogel a new nonreflective material for the infrared. Appl. Opt. 39, 39403944 (2000).
27.Merzbacher, C.I., Meier, S.R., Pierce, J.R., and Korwin, M.L.: Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids 285, 210215 (2001).
28.Sun, W., Du, A., Feng, Y., Shen, J., Huang, S., Tang, J., and Zhou, B.: Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10, 91239128 (2016).
29.Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 39063924 (2010).
Type Description Title
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 1

 Word (382 KB)
382 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed