Skip to main content Accessibility help
×
Home

Impact of enhanced oxide reducibility on rates of solar-driven thermochemical fuel production

  • Michael J. Ignatowich (a1), Alexander H. Bork (a2), Timothy C. Davenport (a3), Jennifer L. M. Rupp (a4), Chih-kai Yang (a5), Yoshihiro Yamazaki (a6) and Sossina M. Haile (a3) (a5)...

Abstract

Two-step, solar-driven thermochemical fuel production offers the potential of efficient conversion of solar energy into dispatchable chemical fuel. Success relies on the availability of materials that readily undergo redox reactions in response to changes in environmental conditions. Those with a low enthalpy of reduction can typically be reduced at moderate temperatures, important for practical operation. However, easy reducibility has often been accompanied by surprisingly poor fuel production kinetics. Using the La1−x Sr x MnO3 series of perovskites as an example, we show that poor fuel production rates are a direct consequence of the diminished enthalpy. Thus, material development efforts will need to balance the countering thermodynamic influences of reduction enthalpy on fuel production capacity and fuel production rate.

Copyright

Corresponding author

Address all correspondence to S. M. Haile at sossina.haile@northwestern.edu

References

Hide All
1. Kodama, T. and Gokon, N.: Thermochemical cycles for high-temperature solar hydrogen production. Chem. Rev. 107, 4048 (2007).
2. Romero, M. and Steinfeld, A.: Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234 (2012).
3. Agrafiotis, C., Roeb, M., and Sattler, C.: A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustainable Energy Rev. 42, 254 (2015).
4. Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., and Steinfeld, A.: High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science 330, 1797 (2010).
5. Chueh, W.C. and Haile, S.M.: A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos. Trans. R. Soc. London, Ser. A 368, 3269 (2010).
6. Chueh, W.C. and Haile, S.M.: Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2 . ChemSusChem 2, 735 (2009).
7. Scheffe, J.R., Weibel, D., and Steinfeld, A.: Lanthanum–strontium–manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2 . Energy & Fuels 27, 4250 (2013).
8. McDaniel, A.H., Miller, E.C., Arifin, D., Ambrosini, A., Coker, E.N., O'Hayre, R., Chueh, W.C., and Tong, J.H.: Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production. Energy Environ. Sci. 6, 2424 (2013).
9. Yang, C.-K., Yamazaki, Y., Aydin, A., and Haile, S.M.: Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J. Mater. Chem. A 2, 13612 (2014).
10. Bork, A.H., Kubicek, M., Struzik, M., and Rupp, J.L.M.: Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. J. Mater. Chem. A 3, 15546 (2015).
11. Galvez, M.E., Jacot, R., Scheffe, J., Cooper, T., Patzke, G., and Steinfeld, A.: Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. Phys. Chem. Chem. Phys. 17, 6629 (2015).
12. Dey, S. and Rao, C.N.R.: Splitting of CO2 by manganite perovskites to generate CO by solar isothermal redox cycling. ACS Energy Lett. 1, 237 (2016).
13. Zhang, Z.K., Andre, L., and Abanades, S.: Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage. Sol. Energy 134, 494 (2016).
14. Cooper, T., Scheffe, J.R., Galvez, M.E., Jacot, R., Patzke, G., and Steinfeld, A.: Lanthanum manganite perovskites with Ca/Sr A-site and Al B-site doping as effective oxygen exchange materials for solar thermochemical fuel production. Energy Tech. 3, 1130 (2015).
15. Takacs, M., Hoes, M., Caduff, M., Cooper, T., Scheffe, J.R., and Steinfeld, A.: Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping. Acta Mater.. 103, 700 (2016).
16. Bork, A.H., Povoden-Karadeniz, E., and Rupp, J.L.M.: Modeling thermochemical solar-to-fuel conversion: CALPHAD for thermodynamic assessment studies of perovskites, exemplified for (La,Sr)MnO3 . Adv. Energy Mater. 7, 1601086 (2017).
17. Panlener, R.J., Blumenthal, R.N., and Garnier, J.E.: Thermodynamic study of nonstoichiometric cerium dioxide. J. Phys. Chem. Solids 36, 1213 (1975).
18. Demont, A., Abanades, S., and Beche, E.: Investigation of perovskite structures as oxygen-exchange redox materials for hydrogen production from thermochemical two-step water-splitting cycles. J. Phys. Chem. C 118, 12682 (2014).
19. Venstrom, L.J., De Smith, R.M., Chandran, R.B., Boman, D.B., Krenzke, P.T., and Davidson, J.H.: Applicability of an equilibrium model to predict the conversion of CO2 to CO via the reduction and oxidation of a fixed bed of cerium dioxide. Energy & Fuels 29, 8168 (2015).
20. Davenport, T.C., Yang, C.K., Kucharczyk, C.J., Ignatowich, M.J., and Haile, S.M.: Implications of exceptional material kinetics on thermochemical fuel production rates. Energy Tech. 4, 764 (2016).
21. Davenport, T.C., Kemei, M., Ignatowich, M.J., and Haile, S.M.: Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production. Int. J. Hydrogen Energy 42, 16932 (2017).
22. Davenport, T.C., Yang, C.K., Kucharczyk, C.J., Ignatowich, M.J., and Haile, S.M.: Maximizing fuel production rates in isothermal solar thermochemical fuel production. Appl. Energy 183, 1098 (2016).
23. Grundy, A.N., Chen, M., Hallstedt, B., and Gauckler, L.J.: Assessment of the La–Mn–O system. J. Phase Equil. Diff. 26, 131 (2005).
24. Grundy, A.N., Povoden, E., Ivas, T., and Gauckler, L.J.: Calculation of defect chemistry using the CALPHAD approach. Calphad Comp. Coupl. Ph. Diagr. Thermochem. 30, 33 (2006).
25. Mizusaki, J., Mori, N., Takai, H., Yonemura, Y., Minamiue, H., Tagawa, H., Dokiya, M., Inaba, H., Naraya, K., Sasamoto, T., and Hashimoto, T.: Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−x Sr x MnO3+δ . Solid State Ion. 129, 163 (2000).
26. Meredig, B. and Wolverton, C.: First-principles thermodynamic framework for the evaluation of thermochemical H2O- or CO2-splitting materials. Phys. Rev. B 80, 245119 (2009).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed