Skip to main content Accessibility help

Increasing surface charge density by effective charge accumulation layer inclusion for high-performance triboelectric nanogenerators

  • Aravind Narain Ravichandran (a1), Marc Ramuz (a1) and Sylvain Blayac (a1)


Powering autonomous electronic devices is a key challenge toward the development of smart sensor networks. In this work, a state-of-the-art triboelectric nanogenerator is devised to enhance the output performance with an effective surface charge density of 70.2 µC/m2, which is 140 times higher than the initial results. Thin film Parylene-C material is deposited to increase charge accumulation by allowing the acceptance of more charges and enhance output performance by a factor of 10. By considering the merit of simple fabrication, we believe the effective charge inclusion layer will be an ideal energy source for low-power portable electronics.


Corresponding author

Address all correspondence to Marc Ramuz at


Hide All
1.Fan, F.R., Tian, Z.Q., and Lin Wang, Z.: Flexible triboelectric generator. Nano Energy 1, 328334 (2012).
2.Fan, F.R., Tang, W., and Wang, Z.L.: Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater.. 28, 42834305 (2016).
3.Zhang, H., Yang, Y., Su, Y., Chen, J., Hu, C., Wu, Z., Liu, Y., Wong, C.P., Bando, Y., and Wang, Z.L.: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2, 693701 (2013).
4.Wang, Z.L.: Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. R. Soc. Chem. 7, 95339557 (2014).
5.Wang, S., Xie, Y., Niu, S., Lin, L., and Wang, Z.L.: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 28182824 (2014).
6.Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., and Wang, Z.L.: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7, 73427351 (2013).
7.Byun, K-E., Lee, M.-H., Cho, Y., Nam, S-G., Shin, H-J., and Park, S.: Potential role of motion for enhancing maximum output energy of triboelectric nanogenerator. APL Mater. 5, 074107 (2017).
8.Seol, M.L., Lee, S.H., Han, J.W., Kim, D., Cho, G.H., and Choi, Y.K.: Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17, 6371 (2015).
9.Huang, T., Lu, M., Yu, H., Zhang, Q., Wang, H., and Zhu, M.: Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep. 5, 13942 (2015).
10.Van Ngoc, H. and Kang, D.J.: Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Nanoscale 8, 50595066 (2016).
11.Mahmud, M.A.P., Lee, J., Kim, G., Lim, H., and Choi, K.B.: Improving the surface charge density of a contact-separation-based triboelectric nanogenerator by modifying the surface morphology. Microelectron. Eng. 159, 102107 (2016).
12.Niu, S., Wang, X., Yi, F., Zhou, Y.S., and Wang, Z.L.: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).
13.Yu, Y. and Wang, X.: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9, 514530 (2016).
14.Wanchul Seung, S-W.K., Yoon, H-J., Yun Kim, T., Ryu, H., Kim, J., Lee, J-H., Hwan Lee, J., Kim, S., Kwon Park, Y., and Jun Park, Y.: Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7, 1600988 (2017).
15.Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y., and Wang, Z.L.: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26, 67206728 (2014).
16.Jie, W., Changsheng, W., Yejing, D., Zhihao, Z., Aurelia, W., Tiejun, Z., and Lin Wang, Z.: Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8, 17 (2017).
17.Feng, Y., Zheng, Y., Zhang, G., Wang, D., Zhou, F., and Liu, W.: A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy 38, 467476 (2017).
18.Villeneuve-Faure, C., Makasheva, K., Boudou, L., and Teyssedre, G.: charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process. Nanotechnology 27, 245702 (2016).
19.Li, H.Y., Su, L., Kuang, S.Y., Pan, C.F., Zhu, G., and Wang, Z.L.: Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy. Adv. Funct. Mater.. 25, 56915697 (2015).
20.Lo, H.W. and Tai, Y.C.: Parylene-based electret power generators. J. Micromechanics Microengineering 18, 104006 (2008).
21.Kahouli, A., Sylvestre, A., Ortega, L., Jomni, F., Yangui, B., Maillard, M., Berge, B., Robert, J.C., and Legrand, J.: Structural and dielectric study of parylene C thin films. Appl. Phys. Lett. 94, 152901 (2009).
22.Song, P., Kuang, S., Panwar, N., Yang, G., Danny, T., Tjin, S., Ng, W., Majid, M., Zhu, G., Yong, K., and Wang, Z.L.: A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 29, 1605668 (2017).
23.Access, O., Heid, A., Stett, A., and Bucher, V.: examination of dielectric strength of thin Parylene C films under various conditions. Curr. Dir. Biomed. Eng. 2, 3941 (2016).
24.Genter, S. and Paul, O.: Parylene-C as an electret material for micro energy harvesting. Proc. Power MEMS. pp. 317320.
25.Wada, Y., Hamate, Y., Nagasawa, S., and Kuwano, H.: Aging characteristics of electret used in a vibration-based electrostatic induction energy harvester. 2011 16th Int. Solid-State Sensors, Actuators and Microsystems Conference, pp. 26262629 (2011).
26.Ma, J., Jie, Y., Bian, J., Li, T., Cao, X., and Wang, N.: From triboelectric nanogenerator to self-powered smart floor: a minimalist design. Nano Energy 39, 192199 (2017).
27.Lin, Z.H., Cheng, G., Lee, S., Pradel, K.C., and Wang, Z.L.: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26, 46904696 (2014).
28.Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L.: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 31093114 (2012).
29.Hsieh, H-H., Hsu, F-C., and Chen, Y-F.: Energetically Autonomous, Wearable, and Multifunctional Sensor. ACS Sensors 3, 113120 (2018).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Ravichandran et al. supplementary material
Ravichandran et al. supplementary material 1

 Word (566 KB)
566 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed